Analysis of SparseHash: An efficient embedding of set-similarity via sparse projections
Autor: | Sophie M. Fosson, Tiziano Bianchi, Chiara Ravazzi, Enrico Magli, Diego Valsesia |
---|---|
Rok vydání: | 2019 |
Předmět: |
FOS: Computer and information sciences
Jaccard index Similarity (geometry) Set-similarity Computer science Computer Vision and Pattern Recognition (cs.CV) Hash function Computer Science - Computer Vision and Pattern Recognition Jaccard similarity Inference 02 engineering and technology 01 natural sciences Set (abstract data type) Artificial Intelligence Computer Science - Data Structures and Algorithms 0103 physical sciences Euclidean geometry 0202 electrical engineering electronic engineering information engineering Data Structures and Algorithms (cs.DS) 010306 general physics Sparse matrix Locality-sensitive hashing business.industry Pattern recognition Embeddings Sparse random projections Signal Processing Embedding 020201 artificial intelligence & image processing Computer Vision and Pattern Recognition Artificial intelligence business Software |
Zdroj: | Pattern recognition letters 128 (2019): 93–99. doi:10.1016/j.patrec.2019.08.014 info:cnr-pdr/source/autori:Valsesia, Diego; Fosson, Sophie M.; Ravazzi, Chiara; Bianchi, Tiziano; Magli, Enrico/titolo:Analysis of SparseHash: An efficient embedding of set-similarity via sparse projections/doi:10.1016%2Fj.patrec.2019.08.014/rivista:Pattern recognition letters/anno:2019/pagina_da:93/pagina_a:99/intervallo_pagine:93–99/volume:128 |
ISSN: | 0167-8655 |
DOI: | 10.1016/j.patrec.2019.08.014 |
Popis: | Embeddings provide compact representations of signals in order to perform efficient inference in a wide variety of tasks. In particular, random projections are common tools to construct Euclidean distance-preserving embeddings, while hashing techniques are extensively used to embed set-similarity metrics, such as the Jaccard coefficient. In this letter, we theoretically prove that a class of random projections based on sparse matrices, called SparseHash, can preserve the Jaccard coefficient between the supports of sparse signals, which can be used to estimate set similarities. Moreover, besides the analysis, we provide an efficient implementation and we test the performance in several numerical experiments, both on synthetic and real datasets. Comment: 25 pages, 6 figures |
Databáze: | OpenAIRE |
Externí odkaz: |