Effect of moderate and high light on photosystem II function in Arabidopsis thaliana depleted in digalactosyl-diacylglycerol
Autor: | Sadok Bouzid, David L. Joly, Robert Carpentier, Saïda Ammar, Jemâa Essemine, Sridharan Govindachary |
---|---|
Rok vydání: | 2011 |
Předmět: |
0106 biological sciences
Chlorophyll Photoinhibition Photosystem II Light Biophysics Arabidopsis Biology Xanthophylls Photochemistry Photosynthesis 01 natural sciences Biochemistry Fluorescence 03 medical and health sciences Zeaxanthins Digalactosyl-diacylglycerol Chlorophyll fluorescence 030304 developmental biology Photosystem chemistry.chemical_classification 0303 health sciences Galactolipids food and beverages Photosystem II Protein Complex Cell Biology Light intensity chemistry Xanthophyll Thylakoid Fluorescence rise Light stress 010606 plant biology & botany |
Zdroj: | Biochimica et biophysica acta. 1817(8) |
ISSN: | 0006-3002 |
Popis: | The response of the heat-sensitive dgd1-2 and dgd1-3 Arabidopsis mutants depleted in the galactolipid DGDG to photoinhibition of chloroplasts photosystem II was studied to verify if there is a relationship between heat stress vulnerability due to depletion in DGDG and the susceptibility to photoinhibitory damage. Non-photochemical quenching (NPQ) is known to dissipate excessive absorbed light energy as heat to protect plants against photodamage. The main component of NPQ is dependent of the transthylakoid pH gradient and is modulated by zeaxanthin (Zx) synthesis. These processes together with chlorophyll fluorescence induction were used to characterize the response of the genotypes. The mutants were more sensitive to photoinhibition to a small extent but this was more severe for dgd1-3 especially at high light intensity. It was deduced that DGDG was not a main factor to influence photoinhibition but other lipid components could affect PSII sensitivity towards photoinhibition in relation to the physical properties of the thylakoid membrane. This article is part of a Special Issue entitled: Photosynthesis Research for Sustainability: from Natural to Artificial. |
Databáze: | OpenAIRE |
Externí odkaz: |