Variations in basement membrane mechanics are linked to epithelial morphogenesis

Autor: Gaël Runel, Arezki Boudaoud, Muriel Grammont, Pascale Milani, Laurie-Anne Lamire, Julien Chlasta, Leticia Arias, Jean-Luc Duteyrat
Přispěvatelé: École normale supérieure - Lyon (ENS Lyon), Laboratoire de biologie et modélisation de la cellule (LBMC UMR 5239), École normale supérieure - Lyon (ENS Lyon)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS), Université Claude Bernard Lyon 1 (UCBL), Université de Lyon, Reproduction et développement des plantes (RDP), Centre National de la Recherche Scientifique (CNRS)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut National de la Recherche Agronomique (INRA)-École normale supérieure - Lyon (ENS Lyon), Association Nationale de la Recherche et de la Technologie (ANR) Blanc 12-SVSE-0023-01, Centre National de la Recherche Scientifique, Ecole Normale Superieure de Lyon, École normale supérieure de Lyon (ENS de Lyon)-Institut National de la Recherche Agronomique (INRA)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Centre National de la Recherche Scientifique (CNRS)
Jazyk: angličtina
Rok vydání: 2017
Předmět:
0301 basic medicine
MESH: Signal Transduction
Cell
Microscopy
Atomic Force

Epithelium
Stiffness
Animals
Genetically Modified

Atomic force microscopy
0302 clinical medicine
Ovarian Follicle
Transforming Growth Factor beta
Morphogenesis
Drosophila Proteins
MESH: Animals
MESH: Basement Membrane
[SDV.BDD]Life Sciences [q-bio]/Development Biology
Epithelial morphogenesis
MESH: Microscopy
Atomic Force

Anatomy
Biomechanical Phenomena
medicine.anatomical_structure
Drosophila melanogaster
MESH: Epithelial Cells
MESH: Cell Adhesion Molecules
Female
Drosophila
Elongation
Signal Transduction
Basement membrane
MESH: Biomechanical Phenomena
MESH: Drosophila Proteins
macromolecular substances
Biology
Fibril
Models
Biological

MESH: Drosophila melanogaster
MESH: Animals
Genetically Modified

03 medical and health sciences
medicine
Animals
MESH: Cell Shape
Ovarian follicle
Molecular Biology
Cell Shape
MESH: Transforming Growth Factor beta
MESH: Models
Biological

Epithelial Cells
[SDV.BDD.MOR]Life Sciences [q-bio]/Development Biology/Morphogenesis
MESH: Morphogenesis
MESH: Ovarian Follicle
MESH: Epithelium
030104 developmental biology
Biophysics
Cell Adhesion Molecules
MESH: Female
030217 neurology & neurosurgery
Developmental Biology
Zdroj: Development (Cambridge, England)
Development (Cambridge, England), Company of Biologists, 2017, 144 (23), pp.4350-4362. ⟨10.1242/dev.152652⟩
Development (Cambridge, England), 2017, 144 (23), pp.4350-4362. ⟨10.1242/dev.152652⟩
ISSN: 1477-9129
0950-1991
DOI: 10.1242/dev.152652⟩
Popis: International audience; The regulation of morphogenesis by the basement membrane (BM) may rely on changes in its mechanical properties. To test this, we developed an atomic force microscopy-based method to measure BM mechanical stiffness during two key processes in Drosophila ovarian follicle development. First, follicle elongation depends on epithelial cells that collectively migrate, secreting BM fibrils perpendicularly to the anteroposterior axis. Our data show that BM stiffness increases during this migration and that fibril incorporation enhances BM stiffness. In addition, stiffness heterogeneity, due to oriented fibrils, is important for egg elongation. Second, epithelial cells change their shape from cuboidal to either squamous or columnar. We prove that BM softens around the squamous cells and that this softening depends on the TGF beta pathway. We also demonstrate that interactions between BM constituents are necessary for cell flattening. Altogether, these results show that BM mechanical properties are modified during development and that, in turn, such mechanical modifications influence both cell and tissue shapes.
Databáze: OpenAIRE