Characterizing Sobolev spaces of vector-valued functions
Autor: | Iván Caamaño, Jesús Á. Jaramillo, Ángeles Prieto |
---|---|
Rok vydání: | 2022 |
Předmět: | |
Zdroj: | E-Prints Complutense. Archivo Institucional de la UCM instname |
Popis: | We are concerned here with Sobolev-type spaces of vector-valued functions. For an open subset Ω⊂RN and a Banach space V, we characterize the functions in the Sobolev-Reshetnyak space R1,p(Ω, V), where 1 ≤p≤∞, in terms of the existence of partial metric derivatives or partial w∗-derivatives with suitable integrability properties. In the case p=∞ the Sobolev-Reshetnyak space R1,∞(Ω, V)is characterized in terms of a uniform local Lipschitz property. We also consider the special case of the space V=l∞. |
Databáze: | OpenAIRE |
Externí odkaz: |