Lower central series, surface braid groups, surjections and permutations

Autor: Paolo Bellingeri, Daciberg Lima Gonçalves, John Guaschi
Přispěvatelé: Laboratoire de Mathématiques Nicolas Oresme (LMNO), Centre National de la Recherche Scientifique (CNRS)-Université de Caen Normandie (UNICAEN), Normandie Université (NU)-Normandie Université (NU), Université de Caen Normandie (UNICAEN), Normandie Université (NU), Centre National de la Recherche Scientifique (CNRS), Instituto de Matemática e Estatística (IME), Universidade de São Paulo (USP)
Rok vydání: 2021
Předmět:
Zdroj: Repositório Institucional da USP (Biblioteca Digital da Produção Intelectual)
Universidade de São Paulo (USP)
instacron:USP
Math. Proc. Cambridge Philos. Soc.
Math. Proc. Cambridge Philos. Soc., In press
ISSN: 1469-8064
0305-0041
DOI: 10.1017/s0305004121000244
Popis: Generalising previous results on classical braid groups by Artin and Lin, we determine the values of m, n ∈ $\mathbb N$ for which there exists a surjection between the n- and m-string braid groups of an orientable surface without boundary. This result is essentially based on specific properties of their lower central series, and the proof is completely combinatorial. We provide similar but partial results in the case of orientable surfaces with boundary components and of non-orientable surfaces without boundary. We give also several results about the classification of different representations of surface braid groups in symmetric groups.
Databáze: OpenAIRE