Correlation of occludin protein mobility with paracellular leak pathway permeability in renal epithelia

Autor: Alexander L. Kolb, Kurt Amsler, Josephine Axis, Robert L. Bacallao
Jazyk: angličtina
Rok vydání: 2018
Předmět:
DOI: 10.1101/437996
Popis: Studies have demonstrated regulation of the epithelial paracellular permeability barrier, the tight junction, by a variety of stimuli. Recent studies have reported a correlation between changes in paracellular permeability, particularly paracellular permeability to large solutes (leak pathway), and mobility of the tight junction protein, occludin, in the plane of the plasma membrane. This had led to the hypothesis that changes in occludin protein mobility are causative for changes in paracellular permeability. Using a renal epithelial cell model system, MDCK, we examined the effect of various manipulations on both leak pathway permeability, monitored as the paracellular movement of a fluorescent molecule (calcein), and occludin protein mobility, monitored through fluorescence recovery after photobleaching. Our results indicate that knockdown of the associated tight junction protein, ZO-1, increases baseline leak pathway permeability, whereas, knockdown of the related tight junction protein, ZO-2, does not alter baseline leak pathway permeability. Knockdown of either ZO-1 or ZO-2 decreases the rate of movement of occludin protein but only knockdown of ZO-2 protein alters the percent of occludin protein that is mobile. Further, treatment with hydrogen peroxide increases leak pathway permeability in wild type MDCK cells and in ZO-2 knockdown MDCK cells but not in ZO-1 knockdown MDCK cells. This treatment decreases the rate of occludin movement in all three cell lines but only alters the mobile fraction of occludin protein in ZO-1 knockdown MDCK cells. Finally, we examined the effect of renal ischemia/reperfusion injury on occludin protein mobility in vivo.Ischemia/reperfusion injury both increased the rate of occludin mobility and increased the fraction of occludin protein that is mobile. These results indicate that, at least in our cell culture and in vivo model systems, there is no consistent correlation between paracellular leak pathway permeability and occludin protein mobility.
Databáze: OpenAIRE