Man against machine reloaded: performance of a market-approved convolutional neural network in classifying a broad spectrum of skin lesions in comparison with 96 dermatologists working under less artificial conditions

Autor: Fabrice Ribeaudeau, Alexander Wald, Timo Buhl, Maria-Letizia Cappelletti, Franziska Hartmann, Philipp Marcel Buck, Rainer Hofmann-Wellenhof, Christina Mitteldorf, Julie Gachon-Buffet, Eva Hulstaert, Jean Paroissien, Isabelle Hoorens, Albert Rosenberger, Diana Plise, M. Zutt, Holger A. Haenssle, Elke Sattler, Roland Schneiderbauer, Marie Bachelerie, Andreas Blum, Daphnée Dumon, Yvonne Beckenbauer, Kristina Buder-Bakhaya, Isabelle Tromme, Aimilios Lallas, Luc Thomas, Mohamed Souhayel Abassi, A. Lallas, Christine Fink, Steffen Emmert, Michèle Dobler, Marine Marc, Mikhail Gusarov, Karen Talour, A. Blum, Wilhelm Stolz, S. Emmert, Pauline Richez, Annabelle Levy-Roy, Pascale Zukervar, Hélène Roche Plaine, Raimonds Karls, Camille Picard, Julie De Labarthe, Valérie Reymann, Ines Bertlich, Cécile Chabbert, Alexander Enk, Priscila Wölbing, Christian Kromer, Deborah Salik, Sophie Brassat, Eveline DeCoster, Marie-France Bouthenet, Céline Le Blanc Vasseux, T. Deinlein, Julia Hartmann, Teresa Deinlein, Sophie Baricault, Anke Herrmann, Thierry Secchi, Sonali Bajaj, Philipp Tschandl, Sarah Schäfer, Pawel Majenka, Veronique Martin Bourret, Julia K. Winkler, Lukas Trennheuser, Clément Barthaux, Christina Alt, Nadège Michelet-Brunacci, Andreea Kolonte, Alise Balcere, Ferdinand Toberer
Přispěvatelé: UCL - SSS/IRSS - Institut de recherche santé et société, UCL - (SLuc) Service de dermatologie
Rok vydání: 2019
Předmět:
Zdroj: Annals of oncology, Vol. 31, no.1, p. 137-143 (2020)
ISSN: 1569-8041
Popis: Convolutional neural networks (CNNs) efficiently differentiate skin lesions by image analysis. Studies comparing a market-approved CNN in a broad range of diagnoses to dermatologists working under less artificial conditions are lacking. One hundred cases of pigmented/non-pigmented skin cancers and benign lesions were used for a two-level reader study in 96 dermatologists (level I: dermoscopy only; level II: clinical close-up images, dermoscopy, and textual information). Additionally, dermoscopic images were classified by a CNN approved for the European market as a medical device (Moleanalyzer Pro, FotoFinder Systems, Bad Birnbach, Germany). Primary endpoints were the sensitivity and specificity of the CNN's dichotomous classification in comparison with the dermatologists' management decisions. Secondary endpoints included the dermatologists' diagnostic decisions, their performance according to their level of experience, and the CNN's area under the curve (AUC) of receiver operating characteristics (ROC). The CNN revealed a sensitivity, specificity, and ROC AUC with corresponding 95% confidence intervals (CI) of 95.0% (95% CI 83.5% to 98.6%), 76.7% (95% CI 64.6% to 85.6%), and 0.918 (95% CI 0.866-0.970), respectively. In level I, the dermatologists' management decisions showed a mean sensitivity and specificity of 89.0% (95% CI 87.4% to 90.6%) and 80.7% (95% CI 78.8% to 82.6%). With level II information, the sensitivity significantly improved to 94.1% (95% CI 93.1% to 95.1%; P < 0.001), while the specificity remained unchanged at 80.4% (95% CI 78.4% to 82.4%; P = 0.97). When fixing the CNN's specificity at the mean specificity of the dermatologists' management decision in level II (80.4%), the CNN's sensitivity was almost equal to that of human raters, at 95% (95% CI 83.5% to 98.6%) versus 94.1% (95% CI 93.1% to 95.1%); P = 0.1. In contrast, dermatologists were outperformed by the CNN in their level I management decisions and level I and II diagnostic decisions. More experienced dermatologists frequently surpassed the CNN's performance. Under less artificial conditions and in a broader spectrum of diagnoses, the CNN and most dermatologists performed on the same level. Dermatologists are trained to integrate information from a range of sources rendering comparative studies that are solely based on one single case image inadequate.
Databáze: OpenAIRE