Boosting a Bridge Artificial Intelligence
Autor: | Yves Costel, Solene Thepaut Ventos, Véronique Ventos, Olivier Teytaud |
---|---|
Přispěvatelé: | Laboratoire de Recherche en Informatique (LRI), Université Paris-Sud - Paris 11 (UP11)-CentraleSupélec-Centre National de la Recherche Scientifique (CNRS), WBRIDGE5, Laboratoire de Mathématiques d'Orsay (LMO), Université Paris-Sud - Paris 11 (UP11)-Centre National de la Recherche Scientifique (CNRS) |
Rok vydání: | 2017 |
Předmět: |
Boosting (machine learning)
[INFO.INFO-LG]Computer Science [cs]/Machine Learning [cs.LG] business.industry Computer science Complete information 020204 information systems 0202 electrical engineering electronic engineering information engineering Probability distribution 020201 artificial intelligence & image processing 02 engineering and technology Artificial intelligence Championship business |
Zdroj: | ICTAI |
DOI: | 10.1109/ictai.2017.00193 |
Popis: | Bridge is an incomplete information game which is complex both for humans and for computer bridge programs. The purpose of this paper is to present our work related to the adaptation to bridge of a recent methodology used for boosting game Artificial Intelligence (AI) by seeking a random seed, or a probability distribution on random seeds, better than the others on a particular game. The bridge AI Wbridge5 developed by Yves Costel has been boosted with the best seed found on the outcome of these experiments and has won the World Computer-Bridge Championship in September 2016. |
Databáze: | OpenAIRE |
Externí odkaz: |