Obstruction Level Detection of Sewers Videos Using Convolutional Neural Networks
Autor: | Dario Garcia Gasulla, Sergio Álvarez Napagao, Rafael Gimenez Esteban, Mario A. Gutiérrez Mondragón, Jaume Brossa Ordoñez |
---|---|
Přispěvatelé: | Universitat Politècnica de Catalunya. Doctorat en Intel·ligència Artificial, Universitat Politècnica de Catalunya. Departament de Ciències de la Computació, Universitat Politècnica de Catalunya. KEMLG - Grup d'Enginyeria del Coneixement i Aprenentatge Automàtic |
Rok vydání: | 2021 |
Předmět: |
Artificial intelligence
Informàtica::Intel·ligència artificial::Aprenentatge automàtic [Àrees temàtiques de la UPC] Sewage Video recognition Computer science business.industry Visió per ordinador Deep learning Pattern recognition Sewers Explainability Convolutional neural network Neural networks (Computer science) Aigües residuals Enginyeria civil::Enginyeria hidràulica marítima i sanitària [Àrees temàtiques de la UPC] Xarxes neuronals (Informàtica) Computer vision Convolutional neural networks Sanitary sewer business Aprenentatge profund |
Zdroj: | International Journal of Structural and Civil Engineering Research. :135-143 |
DOI: | 10.18178/ijscer.10.4.135-143 |
Popis: | Worldwide, sewer networks are designed to transport wastewater to a centralized treatment plant to be treated and returned to the environment. This is a critical process for preventing waterborne illnesses, providing safe drinking water and enhancing general sanitation in society. To keep a perfectly operational sewer network several inspections are manually performed by a Closed-Circuit Television system to report the obstruction level which may trigger a cleaning operative. In this work, we design a methodology to train a Convolutional Neural Network (CNN) for identifying the level of obstruction in pipes. We gathered a database of videos to generate useful frames to fed into the model. Our resulting classifier obtains deployment ready performances. To validate the consistency of the approach and its industrial applicability, we integrate the Layer-wise Relevance Propagation (LPR) algorithm, which endows a further understanding of the neural network behavior. The proposed system provides higher speed, accuracy, and consistency in the sewer process examination. This work is partially supported by the Consejo Nacional de Ciencia y Tecnologia (CONACYT), Estudiante No. CVU: 630716, by the RIS3CAT Utilities 4.0 SENIX project (COMRDI16-1-0055), cofounded by the European Regional Development Fund (FEDER) under the FEDER Catalonia Operative Programme 2014- 2020. It is also partially supported by the Spanish Government through Programa Severo Ochoa (SEV2015-0493), by the Spanish Ministry of Science and Technology through TIN2015-65316-P project, and by the Generalitat de Catalunya (contracts 2017-SGR-1414). |
Databáze: | OpenAIRE |
Externí odkaz: |