Live Tissue Imaging Reveals Distinct Transcellular Pathways for Organic Cations and Anions at the Blood-Cerebrospinal Fluid Barrier
Autor: | Tao Hu, Weibin Zha, Austin Sun, Joanne Wang |
---|---|
Rok vydání: | 2022 |
Předmět: | |
Zdroj: | Mol Pharmacol |
ISSN: | 1521-0111 0026-895X |
DOI: | 10.1124/molpharm.121.000439 |
Popis: | Formed by the choroid plexus epithelial (CPE) cells, the blood-cerebrospinal fluid barrier (BCSFB) plays an active role in removing drugs, toxins, and metabolic wastes from the brain. Several organic cation and anion transporters are expressed in the CPE cells, but how they functionally mediate transepithelial transport of organic cations and anions remain unclear. In this study, we visualized the transcellular transport of fluorescent organic cation and organic anion probes using live tissue imaging in freshly isolated mouse choroid plexuses (CPs). The cationic probe, 4-[4-(dimethylamino)phenyl]-1-methylpyridinium iodide (IDT307) was transported into CPE cells at the apical membrane and highly accumulated in mitochondria. Consistent with the lack of expression of organic cation efflux transporters, there was little efflux of IDT307 into the blood capillary space. Furthermore, IDT307 uptake and intracellular accumulation was attenuated by approximately 70% in CP tissues from mice with targeted deletion of the plasma membrane monoamine transporter (Pmat). In contrast, the anionic probe fluorescein-methotrexate (FL-MTX) was rapidly transported across the CPE cells into the capillary space with little intracellular accumulation. Rifampicin, an inhibitor of organic anion transporting polypeptides (OATPs), completely blocked FL-MTX uptake into the CPE cells whereas MK-571, a pan-inhibitor of multidrug resistance associated proteins (MRPs), abolished basolateral efflux of FL-MTX. In summary, our results suggest distinct transcellular transport pathways for organic cations and anions at the BCSFB and reveal a pivotal role of PMAT, OATP and MRP transporters in organic cation and anion transport at the blood-cerebrospinal fluid interface. SIGNIFICANCE STATEMENT: Live tissue imaging revealed that while organic cations are transported from the cerebrospinal fluid (CSF) into the choroid plexus epithelial cells by plasma membrane monoamine transporter without efflux into the blood, amphipathic anions in the CSF are efficiently transported across the BCSFB through the collaborated function of apical organic anion transporting polypeptides and basolateral multidrug resistance associated proteins. These findings contribute to a mechanistic understanding of the molecular and cellular pathways for choroid plexus clearance of solutes from the brain. |
Databáze: | OpenAIRE |
Externí odkaz: |