Coercive Inequalities in Higher-Dimensional Anisotropic Heisenberg Group
Autor: | Boguslaw Zegarlinski, Esther Bou Dagher |
---|---|
Rok vydání: | 2021 |
Předmět: |
Algebra and Number Theory
Logarithm Function (mathematics) Computer Science::Digital Libraries Sobolev inequality Functional Analysis (math.FA) Mathematics - Functional Analysis symbols.namesake Poincaré conjecture Computer Science::Mathematical Software Heisenberg group Fundamental solution symbols FOS: Mathematics Beta (velocity) Anisotropy Mathematical Physics Analysis Mathematics Mathematical physics |
DOI: | 10.48550/arxiv.2105.02593 |
Popis: | In the setting of higher-dimensional anisotropic Heisenberg group, we compute the fundamental solution for the sub-Laplacian, and we prove Poincar\'e and $\beta-$Logarithmic Sobolev inequalities for measures as a function of this fundamental solution. Comment: 29 pages |
Databáze: | OpenAIRE |
Externí odkaz: |