Thermodynamics of the Spin-1/2 Heisenberg–Ising Chain at High Temperatures: a Rigorous Approach

Autor: Frank Göhmann, Karol K. Kozlowski, Junji Suzuki, Salvish Goomanee
Přispěvatelé: Laboratoire de Physique de l'ENS Lyon (Phys-ENS), École normale supérieure - Lyon (ENS Lyon)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Centre National de la Recherche Scientifique (CNRS), École normale supérieure de Lyon (ENS de Lyon)-Université Claude Bernard Lyon 1 (UCBL)
Rok vydání: 2020
Předmět:
Zdroj: Commun.Math.Phys.
Commun.Math.Phys., 2020, 377 (1), pp.623-673. ⟨10.1007/s00220-020-03749-6⟩
ISSN: 1432-0916
0010-3616
DOI: 10.1007/s00220-020-03749-6
Popis: International audience; This work develops a rigorous setting allowing one to prove several features related to the behaviour of the Heisenberg–Ising (or XXZ) spin-1/2 chain at finite temperature T. Within the quantum inverse scattering method the physically pertinent observables at finite T, such as the per-site free energy or the correlation length, have been argued to admit integral representations whose integrands are expressed in terms of solutions to auxiliary non-linear integral equations. The derivation of such representations was based on numerous conjectures: the possibility to exchange the infinite volume and the infinite Trotter number limits, the existence of a real, non-degenerate, maximal in modulus Eigenvalue of the quantum transfer matrix, the existence and uniqueness of solutions to the auxiliary non-linear integral equations, as well as the possibility to take the infinite Trotter number limit on their level. We rigorously prove all these conjectures for temperatures large enough. As a by product of our analysis, we obtain the large-T asymptotic expansion for a subset of sub-dominant Eigenvalues of the quantum transfer matrix and thus of the associated correlation lengths. This result was never obtained previously, not even on heuristic grounds.
Databáze: OpenAIRE
Nepřihlášeným uživatelům se plný text nezobrazuje