A new lower bound for Hermite's constant for symplectic lattices

Autor: Bjoern Muetzel
Přispěvatelé: GTA, Institut de Mathématiques et de Modélisation de Montpellier (I3M), Centre National de la Recherche Scientifique (CNRS)-Université Montpellier 2 - Sciences et Techniques (UM2)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Université Montpellier 2 - Sciences et Techniques (UM2)-Université de Montpellier (UM), Swiss National Science Foundation
Jazyk: angličtina
Rok vydání: 2011
Předmět:
Zdroj: International Journal of Number Theory
International Journal of Number Theory, World Scientific Publishing, 2012, 8 (4), pp.1067-1080. ⟨10.1142/S1793042112500637⟩
ISSN: 1793-0421
DOI: 10.1142/S1793042112500637⟩
Popis: In section 1 we give an improved lower bound on Hermite's constant $\delta_{2g}$ for symplectic lattices in even dimensions ($g=2n$) by applying a mean-value argument from the geometry of numbers to a subset of symmetric lattices. Here we obtain only a slight improvement. However, we believe that the method applied has further potential. In section 2 we present new families of highly symmetric (symplectic) lattices, which occur in dimensions of powers of two. Here the lattices in dimension $2^n$ are constructed with the help of a multiplicative matrix group isomorphic to $({\Z_2}^n,+)$. We furthermore show the connection of these lattices with the circulant matrices and the Barnes-Wall lattices.
Comment: 13 pages
Databáze: OpenAIRE