Estudo e implementação de um gerador de tráfego com dependência de longa duração
Autor: | Fernando Lemos de Mello |
---|---|
Přispěvatelé: | José Roberto de Almeida Amazonas, Luiz Antonio Baccalá, Nelson Luís Saldanha da Fonseca |
Rok vydání: | 2015 |
Předmět: | |
Zdroj: | Biblioteca Digital de Teses e Dissertações da USP Universidade de São Paulo (USP) instacron:USP |
DOI: | 10.11606/d.3.2006.tde-14122006-152803 |
Popis: | Medidas mostraram que o tráfego das redes multisserviço possui propriedades fractais tais como auto-similaridade e memória longa ou dependência de longa duração (LRD). A memória longa é caracterizada pela existência de um pólo na origem da função densidade espectral de potência (formato 1/f). Também foi constatado que o tráfego pode apresentar dependência de curta duração (SRD) em algumas escalas temporais. A utilização de um gerador de tráfego agregado ?realista?, que sintetize séries temporais fractais, é fundamental para a validação de algoritmos de controle de tráfego. Neste trabalho, a síntese de realizações aproximadas de dois tipos de processos aleatórios auto-similares é efetuada via transformada wavelet. O primeiro deles é denominado Ruído Gaussiano Fracionário (fGN) e o segundo Modelo Wavelet Multifractal (MWM). O método proposto também é capaz de sintetizar séries Gaussianas (fGN) e não-Gaussianas (MWM) com espectros mais genéricos do que 1/f, ou seja, séries que também apresentam dependência de curta duração. A geração é feita em dois estágios. O primeiro gera uma realização aproximada do fGN ou do MWM via Transformada Wavelet Discreta (DWT). O segundo estágio introduz SRD através de uma filtragem IIR da saída do primeiro estágio. Efetuou-se uma caracterização detalhada das séries resultantes, utilizando-se nas análises momentos estatísticos de 2ª., 3ª. e 4ª. ordens, além de testes estatísticos específicos para séries auto-similares. Adicionalmente, duas alternativas de conversão são apresentadas para que as séries temporais geradas sejam transformadas em séries de pacotes, que é o formato adequado para transmissão por um módulo gerador de pacotes. As séries de pacotes são novamente analisadas a fim de identificar se o método de conversão introduz distorção nas características auto-similares das séries sintetizadas. Mostra-se que as séries de pacotes auto-similares podem ser utilizadas em softwares simuladores de rede ou, alternativamente, serem utilizadas para injetar pacotes em redes de teste. Utilizando-se recursos do simulador NS-2, as séries de pacotes sintetizadas foram introduzidas em cenários de simulação adequados. Os resultados (medidas de atraso médio, perda de pacotes para o tráfego de interesse e tamanho da fila) dos cenários com tráfego interferente correspondente às séries de pacotes baseadas em modelos fGN e MWM foram comparados com resultados obtidos em cenários cujo tráfego interferente foi gerado com modelo Poisson. Measurements have shown that multiservice network traffic has fractal properties such as self-similarity and long memory or long-range dependence (LRD). Long memory is characterized by the existence of a pole at the origin of the power spectrum density function (1/f shape). It was also noticed that traffic may present short-range dependence (SRD) at some time scales. The use of a ?realistic? aggregated network traffic generator, one that synthesizes fractal time series, is fundamental to the validation of traffic control algorithms. In this document, the synthesis of approximate realizations of two kinds of self-similar random process is done via wavelet transform. The first one is named Fractional Gaussian Noise (fGN) and the second Multifractal Wavelet Model (MWM). The proposed method is also capable of synthesizing Gaussian (fGN) and non-Gaussian (MWM) time series with more generic spectra than 1/f, that is, time series that also have short-range dependence. The generation is done in two stages. The first one generates an approximate realization of fGN or MWM via Discrete Wavelet Transform (DWT). The second one introduces SRD through Infinite Impulse Response (IIR) filtering at the output of the first stage. A detailed characterization of the resulting series was done, using statistical moments of first, second, third and forth orders, as well as specific statistical tests for self-similar series. Additionally, two alternatives for conversion are introduced in order to generate packet series, which is the suitable format for transmission by a packet generator module, from the original synthesized time series. Packet series are also analyzed to find if the conversion method has introduced distortion in the self-similar characteristics of the synthesized series. It is shown that the self-similar packet series can be used in network simulator software or, alternatively, be used to inject packets in a testbed network. Using resources from the NS-2 simulator, the synthesized packet series were introduced in appropriate network simulator scenarios. The results (average delay measurements, packet loss for interest traffic and queue length) from scenarios with interfering traffic corresponding to the packet series based on fGN and MWM models were compared to results from scenarios with interfering traffic generated by Poisson model. |
Databáze: | OpenAIRE |
Externí odkaz: |