Popis: |
Inactivating mutations in the tuberous sclerosis complex 2 (TSC2) gene, which encodes tuberin, result in the development of TSC and lymphangioleiomyomatosis (LAM). The tumor suppressor effect of tuberin lies in its GTPase-activating protein activity toward Ras homologue enriched in brain (Rheb), a Ras GTPase superfamily member. The statins, 3-hydroxy-3-methylglutaryl CoA reductase inhibitors, have pleiotropic effects which may involve interference with the isoprenylation of Ras and Rho GTPases. We show that atorvastatin selectively inhibits the proliferation of Tsc2−/− mouse embryo fibroblasts and ELT-3 smooth muscle cells in response to serum and estrogen, and under serum-free conditions. The isoprenoids farnesylpyrophosphate (FPP) and geranylgeranylpyrophosphate (GGPP) significantly reverse atorvastatin-induced inhibition of Tsc2−/− cell growth, suggesting that atorvastatin dually targets a farnesylated protein, such as Rheb, and a geranylgeranylated protein, such as Rho, both of which have elevated activity in Tsc2−/− cells. Atorvastatin reduced Rheb isoprenylation, GTP loading, and membrane localization. Atorvastatin also inhibited the constitutive phosphorylation of mammalian target of rapamycin, S6 kinase, and S6 found in Tsc2−/− cells in an FPP-reversible manner and attenuated the high levels of phosphorylated S6 in Tsc2-heterozygous mice. Atorvastatin, but not rapamycin, attenuated the increased levels of activated RhoA in Tsc2−/− cells, and this was reversed by GGPP. These results suggest that atorvastatin may inhibit both rapamycin-sensitive and rapamycin-insensitive mechanisms of tuberin-null cell growth, likely via Rheb and Rho inhibition, respectively. Atorvastatin may have potential therapeutic benefit in TSC syndromes, including LAM. [Cancer Res 2007;67(20):9878–86] |