A note on polynomial maps having fibers of maximal dimension

Autor: Boulos El Hilany
Rok vydání: 2021
Předmět:
Zdroj: Colloquium Mathematicum. 166:129-136
ISSN: 1730-6302
0010-1354
DOI: 10.4064/cm8162-8-2020
Popis: For any two integers $k,n$, $2\leq k\leq n$, let $f:(\mathbb{C}^*)^n\rightarrow\mathbb{C}^k$ be a generic polynomial map with given Newton polytopes. It is known that points, whose fiber under $f$ has codimension one, form a finite set $C_1(f)$ in $\mathbb{C}^k$. For maps $f$ above, we show that $C_1(f)$ is empty if $k\geq 3$, we classify all Newton polytopes contributing to $C_1(f)\neq \emptyset$ for $k=2$, and we compute $|C_1(f)|$.
Comment: Final version, Minor corrections, 6 pages, to appear in Colloquium Mathematicum
Databáze: OpenAIRE