English Spoken Digits Database under noise conditions for research: SDDN

Autor: A. Ouisaadane, S. Safi, M. Frikel
Přispěvatelé: Université Sultan Moulay Slimane (USMS ), Laboratoire d'automatique de Caen (LAC), Université de Caen Normandie (UNICAEN), Normandie Université (NU)-Normandie Université (NU)-École Nationale Supérieure d'Ingénieurs de Caen (ENSICAEN), Normandie Université (NU)
Rok vydání: 2019
Předmět:
Zdroj: 2019 International Conference on Wireless Technologies, Embedded and Intelligent Systems (WITS)
2019 International Conference on Wireless Technologies, Embedded and Intelligent Systems (WITS), Apr 2019, Fez, Morocco. pp.1-5, ⟨10.1109/WITS.2019.8723698⟩
DOI: 10.1109/wits.2019.8723698
Popis: International audience; In this paper, we introduce a modified database for English spoken digits under all types of noise conditions (SDDN). This database was designed for use in scientific research, especially in the field of speech enhancement, noise robustness, background noise, speech recognition, noise reduction, signal processing. It was synthesized by a set of open source spoken numbers of the public on the network, in particular from Speech Commands Dataset v0.02 released by Google's TensorFlow and AIYteams. Various types of real and artificial noise were added for a SNR from 10 dB to -10 dB to make them more suitable for reality. The AURORA, CHiME3 and NOISEX-92 databases were used to select noise types.
Databáze: OpenAIRE