Cxcl12 evolution – subfunctionalization of a ligand through altered interaction with the chemokine receptor

Autor: Karin Dumstrei, Esther-Maria Messerschmidt, Julia Dörries, Maria Doitsidou, Hugues Lortat-Jacob, Bijan Boldajipour, Erez Raz, Petra Schwille, Marcus Thelen, Jonas Ries, Michael Brand, Sylvia Thelen, Katsiaryna Tarbashevich, Shuizi Rachel Yu, Cédric Laguri
Přispěvatelé: Institut de biologie structurale (IBS - UMR 5075 ), Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Theodor Kocher Institute, University of Bern, Biotechnology Center, and Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden = Dresden University of Technology (TU Dresden), ANR-05-BLAN-0271,CHEMOGLYCAN,STRUCTURAL AND FUNCTIONAL STUDIES OF SDF-1/CXCL12 INTERACTIONS WITH HEPARAN SULPHATE IN BOTH HOMEOSTASIS AND PATHOLOGY(2005), Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Centre National de la Recherche Scientifique (CNRS)
Rok vydání: 2011
Předmět:
Chemokine
CXCR4
Chemokine receptor
0302 clinical medicine
Cell Movement
MESH: Microscopy
Confocal

MESH: Animals
MESH: Cell Movement
Zebrafish
In Situ Hybridization
MESH: Evolution
Molecular

Genetics
0303 health sciences
Microscopy
Confocal

Cell migration
MESH: Amino Acid Substitution
Cell biology
Gene Knockdown Techniques
embryonic structures
MESH: Chemokine CXCL12
MESH: Spectrometry
Fluorescence

Receptors
CXCR4

Biology
MESH: Receptors
CXCR4

Cell Line
Evolution
Molecular

03 medical and health sciences
MESH: In Situ Hybridization
Specialization (functional)
Animals
Humans
[SDV.BBM]Life Sciences [q-bio]/Biochemistry
Molecular Biology

MESH: Zebrafish
Molecular Biology
030304 developmental biology
MESH: Humans
biology.organism_classification
MESH: Gene Knockdown Techniques
Chemokine CXCL12
MESH: Cell Line
MESH: Germ Cells
Germ Cells
Spectrometry
Fluorescence

Amino Acid Substitution
biology.protein
Subfunctionalization
030217 neurology & neurosurgery
Function (biology)
Developmental Biology
Zdroj: Development
Development (Cambridge, England)
Development (Cambridge, England), 2011, 138 (14), pp.2909-14. ⟨10.1242/dev.068379⟩
Development (Cambridge, England), Company of Biologists, 2011, 138 (14), pp.2909-14. ⟨10.1242/dev.068379⟩
ISSN: 1477-9129
0950-1991
DOI: 10.1242/dev.068379
Popis: International audience; The active migration of primordial germ cells (PGCs) from their site of specification towards their target is a valuable model for investigating directed cell migration within the complex environment of the developing embryo. In several vertebrates, PGC migration is guided by Cxcl12, a member of the chemokine superfamily. Interestingly, two distinct Cxcl12 paralogs are expressed in zebrafish embryos and contribute to the chemotattractive landscape. Although this offers versatility in the use of chemokine signals, it also requires a mechanism through which migrating cells prioritize the relevant cues that they encounter. Here, we show that PGCs respond preferentially to one of the paralogs and define the molecular basis for this biased behavior. We find that a single amino acid exchange switches the relative affinity of the Cxcl12 ligands for one of the duplicated Cxcr4 receptors, thereby determining the functional specialization of each chemokine that elicits a distinct function in a distinct process. This scenario represents an example of protein subfunctionalization--the specialization of two gene copies to perform complementary functions following gene duplication--which in this case is based on receptor-ligand interaction. Such specialization increases the complexity and flexibility of chemokine signaling in controlling concurrent developmental processes.
Databáze: OpenAIRE