Swim Training Modulates Mouse Skeletal Muscle Energy Metabolism and Ameliorates Reduction in Grip Strength in a Mouse Model of Amyotrophic Lateral Sclerosis

Autor: Jedrzej Antosiewicz, Malgorzata Halon-Golabek, Karol Cieminski, Mariusz R. Wieckowski, Jan J. Kaczor, Katarzyna Patrycja Dzik, Wieslaw Ziolkowski, Damian Jozef Flis
Jazyk: angličtina
Rok vydání: 2019
Předmět:
Bioenergetics
medicine.disease_cause
bioenergetics
lcsh:Chemistry
Mice
Superoxide Dismutase-1
Citrate synthase
Amyotrophic lateral sclerosis
lcsh:QH301-705.5
Spectroscopy
biology
exercise
Chemistry
Neurodegeneration
neurodegeneration
General Medicine
Computer Science Applications
Mitochondria
medicine.anatomical_structure
medicine.medical_specialty
SOD1
Mice
Transgenic

Oxidative phosphorylation
Catalysis
Article
Inorganic Chemistry
Electron Transport Complex IV
Internal medicine
medicine
Animals
Humans
Muscle Strength
Physical and Theoretical Chemistry
Muscle
Skeletal

Molecular Biology
Swimming
Organic Chemistry
Amyotrophic Lateral Sclerosis
Skeletal muscle
medicine.disease
Disease Models
Animal

Oxidative Stress
Endocrinology
lcsh:Biology (General)
lcsh:QD1-999
biology.protein
ALS
Energy Metabolism
Oxidative stress
Biomarkers
Zdroj: International Journal of Molecular Sciences
Volume 20
Issue 2
International Journal of Molecular Sciences, Vol 20, Iss 2, p 233 (2019)
ISSN: 1422-0067
Popis: Metabolic reprogramming in skeletal muscles in the human and animal models of amyotrophic lateral sclerosis (ALS) may be an important factor in the diseases progression. We hypothesized that swim training, a modulator of cellular metabolism via changes in muscle bioenergetics and oxidative stress, ameliorates the reduction in muscle strength in ALS mice. In this study, we used transgenic male mice with the G93A human SOD1 mutation B6SJL-Tg (SOD1G93A) 1Gur/J and wild type B6SJL (WT) mice. Mice were subjected to a grip strength test and isolated skeletal muscle mitochondria were used to perform high-resolution respirometry. Moreover, the activities of enzymes involved in the oxidative energy metabolism and total sulfhydryl groups (as an oxidative stress marker) were evaluated in skeletal muscle. ALS reduces muscle strength (&minus
70% between 11 and 15 weeks, p <
0.05), modulates muscle metabolism through lowering citrate synthase (CS) (&minus
30% vs. WT, p = 0.0007) and increasing cytochrome c oxidase and malate dehydrogenase activities, and elevates oxidative stress markers in skeletal muscle. Swim training slows the reduction in muscle strength (&minus
5% between 11 and 15 weeks) and increases CS activity (+26% vs. ALS I, p = 0.0048). Our findings indicate that swim training is a modulator of skeletal muscle energy metabolism with concomitant improvement of skeletal muscle function in ALS mice.
Databáze: OpenAIRE
Nepřihlášeným uživatelům se plný text nezobrazuje