On the performance of sampling methods for unconstrained minimization

Autor: David Ricardo Barreto Lima Silva
Přispěvatelé: Santos, Sandra Augusta, 1964, Simões, Lucas Eduardo Azevedo, 1989, Ehrhardt, Maria Aparecida Diniz, Birgin, Ernesto Julián Goldberg, Universidade Estadual de Campinas. Instituto de Matemática, Estatística e Computação Científica, Programa de Pós-Graduação em Matemática Aplicada, UNIVERSIDADE ESTADUAL DE CAMPINAS
Jazyk: portugalština
Rok vydání: 2018
Předmět:
Zdroj: Biblioteca Digital de Teses e Dissertações da Universidade Estadual de Campinas (UNICAMP)
Universidade Estadual de Campinas (UNICAMP)
instacron:UNICAMP
Popis: Orientadores: Sandra Augusta Santos, Lucas Eduardo Azevedo Simões Dissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Matemática Estatística e Computação Científica Resumo: A otimização não suave é um ramo da otimização que trabalha com funções objetivo não diferenciáveis em um subconjunto do domínio. Neste trabalho, apresentamos resultados computacionais para a minimização de problemas nos quais as funções objetivo são não diferenciáveis em um subconjunto de medida nula do domínio, e não apresentam restrições. O algoritmo Gradient Sampling (GS) foi proposto recentemente e minimiza a função objetivo com base no gradiente calculado em amostras de pontos gerados uniformemente em uma vizinhança do ponto corrente. Variações deste método envolvendo diferentes direções e diferentes valores de parâmetros foram exploradas. Problemas conhecidos da literatura foram utilizados para analisar comparativamente o comportamento de algumas variantes do método e sua dependência com relação ao número de pontos amostrados. O número de iterações e o valor ótimo obtido foram as medidas de eficiência utilizadas, e pela natureza randômica do método, cada problema foi resolvido diversas vezes, para garantir a relevância estatística dos resultados Abstract: Nonsmooth optimization is a branch of optimization that deals with non-differentiable objective functions in a subset of the domain. In this work, we present computational results for the minimization of problems in which the objective functions are non-differentiable in a subset of the domain with null measure, and do not present restrictions. The Gradient Sampling (GS) algorithm was recently proposed and minimizes the objective function based on the computed gradient at sampled points uniformly generated in a neighborhood of the current point. Variations of this method involving different directions and different parameter values have been explored. Problems from the literature were used to comparatively analyze the behavior of some variants of the method and its dependence on the number of sampled points. The number of iterations and the optimum value obtained were the efficiency measures used, and due to the random nature of the method, each problem was solved several times, to guarantee the statistical relevance of the results Mestrado Matemática Aplicada Mestre em Matemática Aplicada CAPES CNPQ
Databáze: OpenAIRE