Topology Optimization of Structures Using Higher Order Finite Elements in Analysis
Autor: | Dongcheng Lu, Subhrajit Dutta, Sougata Mukherjee, Manyu Xiao, Piotr Breitkopf, Balaji Raghavan |
---|---|
Přispěvatelé: | National Institute of Technology [Silchar], Northwestern Polytechnical University [Xi'an] (NPU), Laboratoire de Génie Civil et Génie Mécanique (LGCGM), Université de Rennes 1 (UR1), Université de Rennes (UNIV-RENNES)-Université de Rennes (UNIV-RENNES)-Institut National des Sciences Appliquées - Rennes (INSA Rennes), Institut National des Sciences Appliquées (INSA)-Université de Rennes (UNIV-RENNES)-Institut National des Sciences Appliquées (INSA), Roberval (Roberval), Université de Technologie de Compiègne (UTC), Das B.Patgiri R.Bandyopadhyay S.Balas V.E., Université de Rennes (UR)-Institut National des Sciences Appliquées - Rennes (INSA Rennes), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA) |
Jazyk: | angličtina |
Rok vydání: | 2020 |
Předmět: |
Quadrilateral
Discretization Computer science Topology optimization Topology (electrical circuits) 02 engineering and technology Topology 01 natural sciences Finite element method Displacement (vector) Numerical instability 010101 applied mathematics [SPI]Engineering Sciences [physics] 020303 mechanical engineering & transports 0203 mechanical engineering Checkerboard pattern Graph (abstract data type) Serendipity element and lagrangian elements 0101 mathematics Numerical stability |
Zdroj: | International Conference on Modeling, Simulation and Optimization, CoMSO 2020 International Conference on Modeling, Simulation and Optimization, CoMSO 2020, Aug 2020, Assam, India. pp.791-800, ⟨10.1007/978-981-15-9829-6_61⟩ Modeling, Simulation and Optimization ISBN: 9789811598289 CoMSO |
DOI: | 10.1007/978-981-15-9829-6_61⟩ |
Popis: | International audience; Topology optimization in general progresses with numerical instability i.e. checkerboard patterns if no filtering radius is used i.e. imposement of minimum length scale. Many studies are done in past decades to get rid of numerical instability or checkerboard pattern while optimizing the topology of mechanical structures. The proposed solution in this paper the structure is meshing structure twice (dual mesh) where first mesh defines the material distribution, and another mesh is utilized for computing the stress and displacement on an element which lets us to a stress-based refinement of mesh without modification of optimum design variables. Optimality criteria method is used for optimizing the design variable i.e. relative density over the domain. Another significance of this approach is that imposition minimum radius not needed to optimize design variables over the structural domain, instead the length scale is determined by the design mesh. A comparison is done between the topology obtained, compliance value and time taken after discretizing the structure with 4 noded element, 8 noded element and 9 noded quadrilateral element and a graph is also plotted to show the compliance value. © 2021, The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. |
Databáze: | OpenAIRE |
Externí odkaz: |