Single core SIMD parallelization of GMM background subtraction algorithm for vehicles detection

Autor: Dominique Houzet, Lhoussein Mabrouk, Yahya Zennayi, Abdelkrim Hamzaoui, Said Belkouch, Sylvain Huet
Přispěvatelé: GIPSA - Architecture, Géométrie, Perception, Images, Gestes (GIPSA-AGPIG), Département Images et Signal (GIPSA-DIS), Grenoble Images Parole Signal Automatique (GIPSA-lab ), Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut Polytechnique de Grenoble - Grenoble Institute of Technology-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut Polytechnique de Grenoble - Grenoble Institute of Technology-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Grenoble Images Parole Signal Automatique (GIPSA-lab ), Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut Polytechnique de Grenoble - Grenoble Institute of Technology-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut Polytechnique de Grenoble - Grenoble Institute of Technology-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), Université Cadi Ayyad [Marrakech] (UCA), MAScIR Foundation, ANR-11-LABX-0025,PERSYVAL-lab,Systemes et Algorithmes Pervasifs au confluent des mondes physique et numérique(2011), Huet, Sylvain, Laboratoires d'excellence - Systemes et Algorithmes Pervasifs au confluent des mondes physique et numérique - - PERSYVAL-lab2011 - ANR-11-LABX-0025 - LABX - VALID
Jazyk: angličtina
Rok vydání: 2018
Předmět:
Zdroj: CiSt 2018-IEEE International Colloquium on Information Science and Technology
CiSt 2018-IEEE International Colloquium on Information Science and Technology, Oct 2018, Marrakech, Morocco
CIST
Popis: Gaussian Mixture Model background subtraction (GMM) method is nowadays used in many moving object detection applications. This pixel wise approach is performed by applying the same arithmetic operations on independent data elements. Thus, the vector execution of these operations is an efficient acceleration method; especially because most of modern SIMD architectures implement long registers in their processors. In this paper, we propose an efficient data vectorization of GMM on two different Intel architectures using the SSE2 vector instructions. This is done by parallelizing the hotspots that consume big processing time in the algorithm, as well as using suitable compilation environment. The performance evaluation for varying datasets using only one core showed that a speedup of 1,8 is achieved. This is satisfactory for this algorithm where many portions are sequential, and where most of computation is done in single-precision floating-point. Hence, this has limited the number of elements that we could pack in the core registers.
Databáze: OpenAIRE