Development of a novel DNA chip based on a bipolar semiconductor microchip system

Autor: Joon Myong Song, Min-Sung Yang, Ho Taik Kwan
Rok vydání: 2007
Předmět:
Zdroj: Biosensors and Bioelectronics. 22:1447-1453
ISSN: 0956-5663
DOI: 10.1016/j.bios.2006.06.026
Popis: We have applied an integrated circuit photodiode array (PDA) chip system to a DNA chip. The PDA chip system, constructed using conventional bipolar semiconductor technology, acts as a solid transducer surface as well as a two-dimensional photodetector. DNA hybridization was performed directly on the PDA chip. The target DNA, the Bacillus subtilis sspE gene, was amplified by polymerase chain reaction (PCR). The 340-bp PCR product was labeled using digoxigenin (DIG). A silicon nitride layer on the photodiode was treated with poly-L-lysine to immobilize the DNA on the surface of the photodiode detection elements. Consequently, the surface of the photodiode detector became positively charged. An anti-DIG-alkaline phosphatase conjugate was reacted with the hybridized DIG-labeled DNA. A color reaction was performed based on the enzymatic reaction between nitroblue tetrazolium/5-bromo-4-chloro-3-indolyl-phosphate (NBT/BCIP) staining solution and a DNA complex containing antibodies. A blue precipitate was formed on the surfaces of the photodiode detection elements. Successful quantitative analysis of the hybridized PCR products was achieved from the light absorption properties of the blue enzymatic reaction product that was produced after a series of reaction processes. Our DNA chip system avoids the complicated optical alignments and light-collecting optical components that are usually required for an optical DNA chip device. As a result, a simple, compact, portable and low-cost DNA chip is achieved. This system has great potential as an alternative system to the conventional DNA reader.
Databáze: OpenAIRE