Popis: |
The increasing evidence of stress-strain hysteresis in large animal or human myocardium calls for extensive characterizations of the passive viscoelastic behavior of the myocardium. Several recent studies have investigated and modeled the viscoelasticity of the left ventricle while the right ventricle (RV) viscoelasticity remains poorly understood. Our goal was to characterize the biaxial viscoelastic behavior of RV free wall (RVFW) using two modeling approaches. We applied both quasi-linear viscoelastic (QLV) and nonlinear viscoelastic (NLV) theories to experimental stress relaxation data from healthy adult ovine. A three-term Prony series relaxation function combined with an Ogden strain energy density function was used in the QLV modeling, while a power-law formulation was adopted in the NLV approach. The ovine RVFW exhibited an anisotropic and strain-dependent viscoelastic behavior relative to anatomical coordinates, and the NLV model showed a higher capacity in predicting strain-dependent stress relaxation than the QLV model. From the QLV fitting, the relaxation term associated with the largest time constant played the dominant role in the overall relaxation behavior at most strains from early to late diastole, whereas the term associated with the smallest time constant was pronounced only at low strains at early diastole. From the NLV fitting, the parameters showed a nonlinear dependence on the strain. Overall, our study characterized the anisotropic, nonlinear viscoelasticity to capture the elastic and viscous resistances of the RVFW during diastole. These findings deepen our understanding of RV myocardium dynamic mechanical properties. STATEMENT OF SIGNIFICANCE: Although significant progress has been made to understand the passive elastic behavior of the right ventricle free wall (RVFW), its viscoelastic behavior remains poorly understood. In this study, we originally applied both quasi-linear viscoelastic (QLV) and nonlinear viscoelastic (NLV) models to published experimental data from healthy ovine RVFW. Our results revealed an anisotropic and strain-dependent viscoelastic behavior of the RVFW. The parameters from the NLV fitting showed nonlinear relationships with the strain, and the NLV model showed a higher capacity in predicting strain-dependent stress relaxation than the QLV model. These findings characterize the anisotropic, nonlinear viscoelasticity of RVFW to fully capture the total (elastic and viscous) resistance that is critical to diastolic function. |