Interstitial Fluid Flow Intensity Modulates Endothelial Sprouting in Restricted Src-Activated Cell Clusters During Capillary Morphogenesis
Autor: | Roger D. Kamm, Carlos E. Semino, Elsa Genové, Rodrigo Hernández Vera, Douglas A. Lauffenburger, Lery Alvarez, Salvador Borrós |
---|---|
Rok vydání: | 2009 |
Předmět: |
Umbilical Veins
Time Factors Endothelium Cell Biomedical Engineering Morphogenesis Bioengineering Biology Biochemistry Article Collagen Type I Biomaterials chemistry.chemical_compound Bioreactors Extracellular fluid medicine Humans Dimethylpolysiloxanes Cells Cultured Cell Proliferation Cell growth Endothelial Cells Extracellular Fluid Immunohistochemistry Capillaries Cell biology ErbB Receptors Vascular endothelial growth factor Nylons src-Family Kinases medicine.anatomical_structure chemistry Fibroblast Growth Factor 2 Human umbilical vein endothelial cell Endothelium Vascular Proto-oncogene tyrosine-protein kinase Src |
Zdroj: | Tissue Engineering Part A. 15:175-185 |
ISSN: | 1937-335X 1937-3341 |
DOI: | 10.1089/ten.tea.2007.0314 |
Popis: | Development of tissues in vitro with dimensions larger than 150 to 200 microm requires the presence of a functional vascular network. Therefore, we have studied capillary morphogenesis under controlled biological and biophysical conditions with the aim of promoting vascular structures in tissue constructs. We and others have previously demonstrated that physiological values of interstitial fluid flow normal to an endothelial monolayer in combination with vascular endothelial growth factor play a critical role during capillary morphogenesis by promoting cell sprouting. In the present work, we studied the effect that a range of interstitial flow velocities (0-50 microm/min) has in promoting the amount, length, and branching of developing sprouts during capillary morphogenesis. The number of capillary-like structures developed from human umbilical vein endothelial cell monolayers across the interstitial flow values tested was not significantly affected. Instead, the length and branching degree of the sprouts presented a significant maximum at flow velocities of 10 to 20 microm/min. More-over, at these same flow values, the phosphorylation level of Src also showed its peak. We discovered that capillary morphogenesis is restricted to patches of Src-activated cells (phosphorylated Src (pSrc)) at the monolayer, suggesting that the transduction pathway in charge of sensing the mechanical stimulus induced by flow is promoting predetermined mechanically sensitive areas (pSrc) to undergo capillary morphogenesis |
Databáze: | OpenAIRE |
Externí odkaz: |