Hard Superconducting Gap in InSb Nanowires

Autor: Kun Zuo, Sebastien Plissard, Diana Car, Leo P. Kouwenhoven, Vincent Mourik, Folkert K. de Vries, Sonia Conesa-Boj, Attila Geresdi, Marina Quintero-Pérez, Erik P. A. M. Bakkers, Jasper van Veen, David J. van Woerkom, Maja C. Cassidy, Sebastian Koelling, Michał P. Nowak, Önder Gül, Hao Zhang
Přispěvatelé: Delft University of Technology (TU Delft), Henan Agriculture University, Eindhoven University of Technology [Eindhoven] (TU/e), Équipe Matériaux et Procédés pour la Nanoélectronique (LAAS-MPN), Laboratoire d'analyse et d'architecture des systèmes (LAAS), Université Toulouse Capitole (UT Capitole), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut National des Sciences Appliquées (INSA)-Université Toulouse - Jean Jaurès (UT2J), Université de Toulouse (UT)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université de Toulouse (UT)-Université Toulouse Capitole (UT Capitole), Université de Toulouse (UT), Université Toulouse - Jean Jaurès (UT2J)-Université Toulouse 1 Capitole (UT1), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université Fédérale Toulouse Midi-Pyrénées-Université Toulouse - Jean Jaurès (UT2J)-Université Toulouse 1 Capitole (UT1), Université Fédérale Toulouse Midi-Pyrénées, Photonics and Semiconductor Nanophysics, Advanced Nanomaterials & Devices, Semiconductor Nanostructures and Impurities
Jazyk: angličtina
Rok vydání: 2017
Předmět:
Letter
NI - Nano Instrumentation
High Tech Systems & Materials
02 engineering and technology
Superconducting materials
01 natural sciences
Topology
Hybrid devices
Indium antimonides
Condensed Matter::Superconductivity
General Materials Science
ComputingMilieux_MISCELLANEOUS
Quantum computer
Superconductivity
TS - Technical Sciences
Condensed Matter - Materials Science
Industrial Innovation
Condensed matter physics
Supercurrent
[CHIM.MATE]Chemical Sciences/Material chemistry
021001 nanoscience & nanotechnology
Condensed Matter Physics
Topological insulator
[PHYS.COND.CM-MS]Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci]
Nano Technology
hybrid device
0210 nano-technology
Materials science
III-V semiconductors
Topological superconductivity
Nanowire
FOS: Physical sciences
Bioengineering
InSb
Topological quantum computer
Narrow band gap semiconductors
Superconductivity (cond-mat.supr-con)
Hard gap
Condensed Matter::Materials Science
[PHYS.QPHY]Physics [physics]/Quantum Physics [quant-ph]
Mesoscale and Nanoscale Physics (cond-mat.mes-hall)
0103 physical sciences
[CHIM.CRIS]Chemical Sciences/Cristallography
010306 general physics
One dimensional
Condensed Matter - Mesoscale and Nanoscale Physics
business.industry
Nanowires
Mechanical Engineering
Two dimensional electron gas
Condensed Matter - Superconductivity
Quantum computers
Materials Science (cond-mat.mtrl-sci)
General Chemistry
Semiconductor nanowire
Electrical contacts
Semiconductor
Electron gas
Magnetic fields
Quantum theory
business
Majorana
Zdroj: Nano Letters
Nano Letters, 2017, 17 (4), pp.2690-2696. ⟨10.1021/acs.nanolett.7b00540⟩
Nano Letters, American Chemical Society, 2017, 17 (4), pp.2690-2696. ⟨10.1021/acs.nanolett.7b00540⟩
Nano Letters, 17(4), 2690-2696. American Chemical Society
Nano Letters, 4, 17, 2690-2696
Nano Letters: a journal dedicated to nanoscience and nanotechnology, 17(4)
ISSN: 1530-6984
1530-6992
Popis: Topological superconductivity is a state of matter that can host Majorana modes, the building blocks of a topological quantum computer. Many experimental platforms predicted to show such a topological state rely on proximity-induced superconductivity. However, accessing the topological properties requires an induced hard superconducting gap, which is challenging to achieve for most material systems. We have systematically studied how the interface between an InSb semiconductor nanowire and a NbTiN superconductor affects the induced superconducting properties. Step by step, we improve the homogeneity of the interface while ensuring a barrier-free electrical contact to the superconductor, and obtain a hard gap in the InSb nanowire. The magnetic field stability of NbTiN allows the InSb nanowire to maintain a hard gap and a supercurrent in the presence of magnetic fields (~ 0.5 Tesla), a requirement for topological superconductivity in one-dimensional systems. Our study provides a guideline to induce superconductivity in various experimental platforms such as semiconductor nanowires, two dimensional electron gases and topological insulators, and holds relevance for topological superconductivity and quantum computation.
published version
Databáze: OpenAIRE