Popis: |
The physiological challenges posed by climate change for seasonal, perennial plants include increased risk of heat waves, postbudbreak freezing ('false springs'), and droughts. Although considerable physiological work has shown that the traits conferring tolerance to these stressors - thermotolerance, cold hardiness, and water deficit stress, respectively - are not static in time, they are frequently treated as such. In this review, I synthesize the recent literature on predictable seasonal - and therefore, phenological - patterns of acclimation and deacclimation to heat, cold, and water-deficit stress in perennials, focusing on woody plants native to temperate climates. I highlight promising, high-throughput techniques for quantifying thermotolerance, cold hardiness, and drought tolerance. For each of these forms of stress tolerance, I summarize the current balance of evidence regarding temporal patterns over the course of a year and suggest a characteristic temporal scale in these responses to environmental stress. In doing so, I offer a synthetic framework of 'phenological physiology', in which understanding and leveraging seasonally recurring (phenological) patterns of physiological stress acclimation can facilitate climate change adaptation and mitigation. |