Mono-vision based moving object detection in complex traffic scenes

Autor: Vincent Fremont, Sergio Alberto Rodriguez Florez, Bihao Wang
Přispěvatelé: Heuristique et Diagnostic des Systèmes Complexes [Compiègne] (Heudiasyc), Université de Technologie de Compiègne (UTC)-Centre National de la Recherche Scientifique (CNRS), Méthodes et Outils pour les Signaux et Systèmes (SATIE-MOSS), Systèmes d'Information et d'Analyse Multi-Echelles (SIAME), Systèmes et Applications des Technologies de l'Information et de l'Energie (SATIE), École normale supérieure - Cachan (ENS Cachan)-Université Paris-Sud - Paris 11 (UP11)-Institut Français des Sciences et Technologies des Transports, de l'Aménagement et des Réseaux (IFSTTAR)-École normale supérieure - Rennes (ENS Rennes)-Université de Cergy Pontoise (UCP), Université Paris-Seine-Université Paris-Seine-Conservatoire National des Arts et Métiers [CNAM] (CNAM)-Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Cachan (ENS Cachan)-Université Paris-Sud - Paris 11 (UP11)-Institut Français des Sciences et Technologies des Transports, de l'Aménagement et des Réseaux (IFSTTAR)-École normale supérieure - Rennes (ENS Rennes)-Université de Cergy Pontoise (UCP), Université Paris-Seine-Université Paris-Seine-Conservatoire National des Arts et Métiers [CNAM] (CNAM)-Centre National de la Recherche Scientifique (CNRS)-Systèmes et Applications des Technologies de l'Information et de l'Energie (SATIE), Université Paris-Seine-Université Paris-Seine-Conservatoire National des Arts et Métiers [CNAM] (CNAM)-Centre National de la Recherche Scientifique (CNRS), Université Paris-Saclay, Fremont, Vincent
Jazyk: angličtina
Rok vydání: 2017
Předmět:
Zdroj: 28th IEEE Intelligent Vehicles Symposium (IV 2017)
28th IEEE Intelligent Vehicles Symposium (IV 2017), Jun 2017, Redondo Beach, United States. pp.1078-1084
Intelligent Vehicles Symposium
Popis: Vision-based dynamic objects motion segmentation can significantly help to understand the context around vehicles, and furthermore improve road traffic safety and autonomous navigation. Therefore, moving object detection in complex traffic scene becomes an inevitable issue for ADAS and autonomous vehicles. In this paper, we propose an approach that combines different multiple views geometry constraints to achieve moving objects detection using only a monocular camera. Self-assigned weights are estimated online moderating the contribution of each constraint. Such a combination enhances the detection performance in degenerated situations. According to the experimental results, the proposed approach provides accurate moving objects detections in dynamic traffic scenarios with large camera motions.
Databáze: OpenAIRE