Self-Adaptive Pre-Processing Methodology for Big Data Stream Mining in Internet of Things Environmental Sensor Monitoring
Autor: | Wei Song, Simon Fong, Athanasios V. Vasilakos, Richard Millham, Kun Lan |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2017 |
Předmět: |
Data stream
Physics and Astronomy (miscellaneous) Computer science General Mathematics Big data Feature extraction 02 engineering and technology computer.software_genre data stream pre-processing self-adaptive segmentation clustering-based particle swarm optimization (CPSO) Internet of Things (IoT) datasets 020204 information systems Sliding window protocol 0202 electrical engineering electronic engineering information engineering Computer Science (miscellaneous) Cluster analysis Metaheuristic business.industry Data stream mining lcsh:Mathematics lcsh:QA1-939 Data stream clustering Chemistry (miscellaneous) 020201 artificial intelligence & image processing Data mining business computer |
Zdroj: | Symmetry; Volume 9; Issue 10; Pages: 244 Symmetry, Vol 9, Iss 10, p 244 (2017) |
ISSN: | 2073-8994 |
DOI: | 10.3390/sym9100244 |
Popis: | Over the years, advanced IT technologies have facilitated the emergence of new ways of generating and gathering data rapidly, continuously, and largely and are associated with a new research and application branch, namely, data stream mining (DSM). Among those multiple scenarios of DSM, the Internet of Things (IoT) plays a significant role, with a typical meaning of a tough and challenging computational case of big data. In this paper, we describe a self-adaptive approach to the pre-processing step of data stream classification. The proposed algorithm allows different divisions with both variable numbers and lengths of sub-windows under a whole sliding window on an input stream, and clustering-based particle swarm optimization (CPSO) is adopted as the main metaheuristic search method to guarantee that its stream segmentations are effective and adaptive to itself. In order to create a more abundant search space, statistical feature extraction (SFX) is applied after variable partitions of the entire sliding window. We validate and test the effort of our algorithm with other temporal methods according to several IoT environmental sensor monitoring datasets. The experiments yield encouraging outcomes, supporting the reality that picking significant appropriate variant sub-window segmentations heuristically with an incorporated clustering technique merit would allow these to perform better than others. |
Databáze: | OpenAIRE |
Externí odkaz: |