Asynchronous Spiking Neurons, the Natural Key to Exploit Temporal Sparsity

Autor: Bernabe Linares-Barranco, Pieter Simoens, Teresa Serrano-Gotarredona, Mina A. Khoei, Bart Dhoedt, Priscila Holanda, Orlando Miguel Pires Dos Reis Moreira, Jonathan Tapson, Sam Leroux, Amirreza Yousefzadeh, Sahar Hosseini
Přispěvatelé: Universidad de Sevilla. Departamento de Arquitectura y Tecnología de Computadores, Universidad de Sevilla. TIC178: Diseño y Test de Circuitos Integrados de Señal Mixta, European Union (UE), Ministerio de Economía y Competitividad (MINECO). España
Rok vydání: 2019
Předmět:
0209 industrial biotechnology
Technology and Engineering
Computer science
Neural Network
Inference
02 engineering and technology
Asynchronous Inference
Deep Neural Network
Bio-inspired processing
020901 industrial engineering & automation
Spiking neural network
0202 electrical engineering
electronic engineering
information engineering

Feature (machine learning)
Algorithm design and analysis
Inference algorithms
Electrical and Electronic Engineering
Inference engine
BRAIN
Signal processing
Artificial neural network
Artificial neural networks
Deep
Neuromorphic hardware
Convolutional Neural Network (CNN)
NETWORKS
Convolutional Neural Networks (CNN)
Computer engineering
Temporal sparsity
Asynchronous communication
Spiking
020201 artificial intelligence & image processing
Algorithm design
Neural Network (SNN)
Neural networks
Zdroj: idUS. Depósito de Investigación de la Universidad de Sevilla
instname
idUS: Depósito de Investigación de la Universidad de Sevilla
Universidad de Sevilla (US)
IEEE JOURNAL ON EMERGING AND SELECTED TOPICS IN CIRCUITS AND SYSTEMS
ISSN: 2156-3357
2156-3365
Popis: Inference of Deep Neural Networks for stream signal (Video/Audio) processing in edge devices is still challenging. Unlike the most state of the art inference engines which are efficient for static signals, our brain is optimized for real-time dynamic signal processing. We believe one important feature of the brain (asynchronous state-full processing) is the key to its excellence in this domain. In this work, we show how asynchronous processing with state-full neurons allows exploitation of the existing sparsity in natural signals. This paper explains three different types of sparsity and proposes an inference algorithm which exploits all types of sparsities in the execution of already trained networks. Our experiments in three different applications (Handwritten digit recognition, Autonomous Steering and Hand-Gesture recognition) show that this model of inference reduces the number of required operations for sparse input data by a factor of one to two orders of magnitudes. Additionally, due to fully asynchronous processing this type of inference can be run on fully distributed and scalable neuromorphic hardware platforms. European Union's Horizon 2020 No 687299 NeuRAM European Union's Horizon 2020 No 824164 HERMES Ministerio de Economía y Competitividad TEC2015-63884-C2-1-P
Databáze: OpenAIRE