Spontaneous Hydrolysis Reactions of cis- and trans-β-Methyl-4-methoxystyrene Oxides (Anethole Oxides): Buildup of trans-Anethole Oxide as an Intermediate in the Spontaneous Reaction of cis-Anethole Oxide

Autor: Sampson K. Kyere, Ram S. Mohan, Kostas Gavardinas, Dale L. Whalen
Rok vydání: 2000
Předmět:
Zdroj: The Journal of Organic Chemistry. 65:1407-1413
ISSN: 1520-6904
0022-3263
Popis: Rates and products of the reactions of trans- and cis-beta-methyl-4-methoxystyrene oxides (1 and 2) (anethole oxides) and beta,beta-dimethyl-4-methoxystyrene oxide (3) in water solutions in the pH range 4-12 have been determined. In the pH range ca. 8-12, each of these epoxides reacts by a spontaneous reaction. The spontaneous reaction of trans-anethole oxide (1) yields ca. 40% of (4-methoxyphenyl)acetone and 60% of 1-(4-methoxyphenyl)-1, 2-propanediols (erythro:threo ratio ca. 3:1). The spontaneous reaction of cis-anethole oxide is more complicated. The yields of diol and ketone products vary with pH in the pH range 8-11, even though there is not a corresponding change in rate. These results are interpreted by a mechanism in which 2 undergoes isomerization in part to the more reactive trans-anethole oxide (1), which subsequently reacts by acid-catalyzed and/or spontaneous reactions, depending on the pH, to yield diol and ketone products. The buildup of the intermediate trans-anethole oxide in the spontaneous reaction of cis-anethole oxide was detected by (1)H NMR analysis of the reaction mixture. Other primary products of the spontaneous reaction of 2 are (4-methoxyphenyl)acetone (73%) and threo-1-(4-methoxyphenyl)-1,2-propanediol (ca. 3%). The rates and products of the spontaneous reaction of 2 and its beta-deuterium-labeled derivative were determined, and the lack of significant kinetic and partitioning deuterium isotope effects indicates that the isomerization of 2 to ketone and to trans-anethole oxide must occur primarily by nonintersecting reaction pathways.
Databáze: OpenAIRE