Primary decompositions of unital locally matrix algebras

Autor: Bogdana Oliynyk, Oksana Bezushchak
Rok vydání: 2020
Předmět:
Zdroj: Bulletin of Mathematical Sciences, Vol 10, Iss 1, Pp 2050006-1-2050006-7 (2020)
ISSN: 1664-3615
1664-3607
DOI: 10.1142/s166436072050006x
Popis: We construct a unital locally matrix algebra of uncountable dimension that (1) does not admit a primary decomposition, (2) has an infinite locally finite Steinitz number. It gives negative answers to questions from [V. M. Kurochkin, On the theory of locally simple and locally normal algebras, Mat. Sb., Nov. Ser. 22(64)(3) (1948) 443–454; O. Bezushchak and B. Oliynyk, Unital locally matrix algebras and Steinitz numbers, J. Algebra Appl. (2020), online ready]. We also show that for an arbitrary infinite Steinitz number [Formula: see text] there exists a unital locally matrix algebra [Formula: see text] having the Steinitz number [Formula: see text] and not isomorphic to a tensor product of finite-dimensional matrix algebras.
Databáze: OpenAIRE