On the use of nonlinear anisotropic diffusion filters for seismic imaging using the full waveform
Autor: | L Métivier, R Brossier |
---|---|
Přispěvatelé: | Institut des Sciences de la Terre (ISTerre), Institut national des sciences de l'Univers (INSU - CNRS)-Institut de recherche pour le développement [IRD] : UR219-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Université Gustave Eiffel-Université Grenoble Alpes (UGA), Equations aux Dérivées Partielles (EDP), Laboratoire Jean Kuntzmann (LJK), Institut National de Recherche en Informatique et en Automatique (Inria)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA)-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA) |
Jazyk: | angličtina |
Rok vydání: | 2022 |
Předmět: |
PDE-constrained optimization problems
nonlinear diffusion filters full waveform inversion seismic imaging nonlinear inverse problems Applied Mathematics Signal Processing anisotropic diffusion [PHYS.PHYS.PHYS-GEO-PH]Physics [physics]/Physics [physics]/Geophysics [physics.geo-ph] [INFO.INFO-MO]Computer Science [cs]/Modeling and Simulation Mathematical Physics Computer Science Applications Theoretical Computer Science |
Zdroj: | Inverse Problems Inverse Problems, 2022, 38 (11), pp.115001. ⟨10.1088/1361-6420/ac8c91⟩ |
ISSN: | 0266-5611 1361-6420 |
Popis: | Nonlinear anisotropic diffusion filters have been introduced in the field of image processing for image denoising and image restoration. They are based on the solution of partial differential equations involving a nonlinear anisotropic diffusion operator. From a mathematical point of view, these filters enjoy attractive properties, such as minimum–maximum principle, and an inherent decomposition of the images in different scales. We investigate in this study how these filters can be applied to help solving data-fitting inverse problems. We focus on seismic imaging using the full waveform, a well known nonlinear instance of such inverse problems. In this context, we show how the filters can be applied directly to the solution space, to enhance the structural coherence of the parameters representing the subsurface mechanical properties and accelerate the convergence. We also show how they can be applied to the seismic data itself. In the latter case, the method results in an original low-frequency data enhancement technique making it possible to stabilize the inversion process when started from an initial model away from the basin of attraction of the global minimizer. Numerical results on a 2D realistic synthetic full waveform inversion case study illustrate the interesting properties of both approaches. |
Databáze: | OpenAIRE |
Externí odkaz: |