Positive line modules over the irreducible quantum flag manifolds
Autor: | Fredy Díaz García, Andrey O. Krutov, Réamonn Ó Buachalla, Petr Somberg, Karen R. Strung |
---|---|
Rok vydání: | 2022 |
Předmět: |
Mathematics - Differential Geometry
Mathematics - Algebraic Geometry Differential Geometry (math.DG) Mathematics - Quantum Algebra FOS: Mathematics Mathematics - Operator Algebras Quantum Algebra (math.QA) 46L87 81R60 81R50 17B37 16T05 Statistical and Nonlinear Physics Operator Algebras (math.OA) Algebraic Geometry (math.AG) Mathematics::Symplectic Geometry Mathematical Physics |
Zdroj: | Letters in Mathematical Physics. 112 |
ISSN: | 1573-0530 0377-9017 |
DOI: | 10.1007/s11005-022-01619-x |
Popis: | Noncommutative K\"ahler structures were recently introduced by the second author as a framework for studying noncommutative K\"ahler geometry on quantum homogeneous spaces. It was subsequently observed that the notion of a positive vector bundle directly generalises to this setting, as does the Kodaira vanishing theorem. In this paper, by restricting to covariant K\"ahler structures of irreducible type (those having an irreducible space of holomorphic one-forms) we provide simple cohomological criteria for positivity, offering a means to avoid explicit curvature calculations. These general results are applied to our motivating family of examples, the irreducible quantum flag manifolds $\mathcal{O}_q(G/L_S)$. Building on the recently established noncommutative Borel-Weil theorem, every covariant line bundle over $\mathcal{O}_q(G/L_S)$ can be identified as positive, negative, or flat, and hence we can conclude that each K\"ahler structure is of Fano type. Moreover, it proves possible to extend the Borel-Weil theorem for $\mathcal{O}_q(G/L_S)$ to a direct noncommutative generalisation of the classical Bott-Borel-Weil theorem for positive line bundles. Comment: 30 pages, 2 tables. Minor changes. To appear in Letters in Mathematical Physics |
Databáze: | OpenAIRE |
Externí odkaz: |