Sparse Bayesian Non-linear Regression for Multiple Onsets Estimation in Non-invasive Cardiac Electrophysiology

Autor: Nicholas Ayache, Maxime Sermesant, Jack Lee, Lauren Fovargue, Reza Razavi, Hervé Delingette, Tom Jackson, Sophie Giffard-Roisin, C. Aldo Rinaldi
Přispěvatelé: COMUE Université Côte d'Azur (2015-2019) (COMUE UCA), Analysis and Simulation of Biomedical Images (ASCLEPIOS), Inria Sophia Antipolis - Méditerranée (CRISAM), Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria), Imaging Sciences and Biomedical Engineering Division [London], Guy's and St Thomas' Hospital [London]-King‘s College London, Mihaela Pop, SOFA, European Project: 611823,EC:FP7:ICT,FP7-ICT-2013-10,VP2HF(2013), European Project: 291080,EC:FP7:ERC,ERC-2011-ADG_20110209,MEDYMA(2012)
Jazyk: angličtina
Rok vydání: 2017
Předmět:
Computer science
Personalisation
[SDV.IB.IMA]Life Sciences [q-bio]/Bioengineering/Imaging
0206 medical engineering
Bayesian probability
02 engineering and technology
Machine learning
computer.software_genre
030218 nuclear medicine & medical imaging
Relevance vector machine
03 medical and health sciences
0302 clinical medicine
[INFO.INFO-LG]Computer Science [cs]/Machine Learning [cs.LG]
[SDV.MHEP.CSC]Life Sciences [q-bio]/Human health and pathology/Cardiology and cardiovascular system
[INFO.INFO-IM]Computer Science [cs]/Medical Imaging
Sinus rhythm
Ground truth
Cardiac electrophysiology
business.industry
Pattern recognition
020601 biomedical engineering
[INFO.INFO-MO]Computer Science [cs]/Modeling and Simulation
Regression
Kernel (statistics)
Relevance Vector Machine
ECG Imaging
Artificial intelligence
Cardiac Electrophysiology
business
Nonlinear regression
computer
Zdroj: Functional imaging and modelling of the heart 2017
Functional imaging and modelling of the heart 2017, Jun 2017, Toronto, Canada. pp.230-238, ⟨10.1007/978-3-319-59448-4_22⟩
Functional Imaging and Modelling of the Heart ISBN: 9783319594477
FIMH
DOI: 10.1007/978-3-319-59448-4_22⟩
Popis: Best paper award FIMH 2017, category: Electrophysiology; International audience; In the scope of modelling cardiac electrophysiology (EP) for understanding pathologies and predicting the response to therapies, patient-specific model parameters need to be estimated. Although per-sonalisation from non-invasive data (body surface potential mapping, BSPM) has been investigated on simple cases mostly with a single pacing site, there is a need for a method able to handle more complex situations such as sinus rhythm with several onsets. In the scope of estimating cardiac activation maps, we propose a sparse Bayesian kernel-based regression (relevance vector machine, RVM) from a large patient-specific simulated database. RVM additionally provides a confidence on the result and an automatic selection of relevant features. With the use of specific BSPM descriptors and a reduced space for the myocardial geometry, we detail this framework on a real case of simultaneous biventricular pacing where both onsets were precisely localised. The obtained results (mean distance to the two ground truth pacing leads is 18.4mm) demonstrate the usefulness of this non-linear approach.
Databáze: OpenAIRE