An algebraic model for rational toral G-spectra
Autor: | Magdalena Kedziorek, David Barnes, John Greenlees |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2019 |
Předmět: |
Pure mathematics
Model category rational equivariant spectra Algebraic topology 01 natural sciences Mathematics::Algebraic Topology Retract Mathematics::Category Theory 0103 physical sciences FOS: Mathematics Algebraic Topology (math.AT) Equivariant cohomology Mathematics - Algebraic Topology 0101 mathematics QA Mathematics model category Homotopy category 010102 general mathematics Lie group equivariant cohomology algebraic models 55N91 55P60 55P42 Maximal torus 010307 mathematical physics Geometry and Topology Abelian category 55N91 (Primary) 55P42 55P60 (Secondary) |
Zdroj: | Algebraic & Geometric Topology Algebr. Geom. Topol. 19, no. 7 (2019), 3541-3599 Barnes, D, Greenlees, J & Kedziorek, M 2019, ' An algebraic model for rational toral G-spectra ', Algebraic and Geometric Topology, vol. 19, no. 7, pp. 3541–3599 . https://doi.org/10.2140/agt.2019.19.3541 |
ISSN: | 1472-2747 |
Popis: | For G a compact Lie group, toral G-spectra are those rational G-spectra whose geometric isotropy consists of subgroups of a maximal torus of G. The homotopy category of rational toral G-spectra is a retract of the category of all rational G-spectra. In this paper we show that the abelian category defined by the second author in previous work gives an algebraic model for the toral part of rational G-spectra. This is a major step in establishing an algebraic model for all rational G-spectra, for any compact Lie group G. 43 pages, final version. To appear in A> |
Databáze: | OpenAIRE |
Externí odkaz: |