Value of Magnetic Resonance Diffusion Tensor Imaging Combined with Quantitative Electroencephalogram in Diagnosis of Neurocognitive Impairment in Patients with White Matter Demyelination
Autor: | Jun Li, Chunjie Song, Yun Ma, Xiaowei Cai, Hongtao Li, Yinjie Zhong |
---|---|
Rok vydání: | 2021 |
Předmět: |
Male
Article Subject Neurocognitive Disorders Corpus callosum White matter 03 medical and health sciences 0302 clinical medicine Nuclear magnetic resonance Fractional anisotropy Medical technology medicine Humans Radiology Nuclear Medicine and imaging In patient 030212 general & internal medicine R855-855.5 Magnetic resonance diffusion tensor imaging Aged medicine.diagnostic_test business.industry Montreal Cognitive Assessment Magnetic resonance imaging Electroencephalography Prognosis White Matter medicine.anatomical_structure Diffusion Tensor Imaging Case-Control Studies Female business Neurocognitive 030217 neurology & neurosurgery Demyelinating Diseases Follow-Up Studies Research Article |
Zdroj: | Contrast Media & Molecular Imaging Contrast Media & Molecular Imaging, Vol 2021 (2021) |
ISSN: | 1555-4317 |
Popis: | This paper aimed to explore the clinical value of combined adoption of magnetic resonance diffusion tensor imaging (DTI) and quantitative electroencephalogram (QEEG) in assessing microstructure changes and mild neurocognitive dysfunction in patients with white matter demyelination. 128 cases of white matter demyelination admitted to the hospital from October 2018 to October 2019 were rolled into the research group, and 100 healthy patients physically examined during the same period were rolled into the control (ctrl) group. QEEG and magnetic resonance DTI examinations were performed for all patients. The wave power of δ, θ, α, and β and the ratio of α/θ and (δ + θ)/(α + β) were recorded. The FA values of white matter fibers in different brain areas were measured, and the Montreal Cognitive Assessment (MoCA) and Addenbrooke Cognitive Evaluation rating (ACE-R) were adopted to assess the neurocognitive function of patients. It was found that the dominant frequency of each brain area in the research group was 8-9 Hz slow α wave. In contrast with the ctrl, the α wave and α/θ values in the research group were lower, while θ wave and δ + θ/α + β values were higher ( P < 0.05 ); the scores of ACE-R and MoCA were lower ( P < 0.01 ); the fractional anisotropy (FA) values of the right frontal lobe white matter (0.335 ± 0.068), the left temporal lobe white matter (0.391 ± 0.032), and the corpus callosum knee white matter (0.658 ± 0.053) were lower ( P < 0.05 ). The FA values of these three areas were positively correlated with attention and calculation, memory, and memory of MoCA scale, respectively ( P < 0.05 ). The FA value of the right frontal white matter was positively correlated with the attention and calculation score of the ACE-R scale ( P < 0.05 ). In conclusion, magnetic resonance DTI combined with QEEG could reflect the microstructural changes of white matter, which may be associated with mild neurocognitive impairment. The primary objective of the study was to explore the clinical value of combined adoption of magnetic resonance DTI and QEEG in assessing microstructure changes and mild neurocognitive dysfunction in patients with white matter demyelination, expected to provide a theoretical basis for the treatment of white matter demyelination. |
Databáze: | OpenAIRE |
Externí odkaz: |