Efficient and Limiting Reactions in Aqueous Light-Induced Hydrogen Evolution Systems using Molecular Catalysts and Quantum Dots

Autor: Carolina Gimbert-Suriñach, Jérôme Fortage, Emilio Palomares, Thibaut Stoll, Antoni Llobet, Josep Albero, Marie-Noëlle Collomb, Alain Deronzier
Přispěvatelé: Département de Chimie Moléculaire (DCM), Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)-Université Joseph Fourier - Grenoble 1 (UJF), Département de Chimie Moléculaire - Chimie Inorganique Redox Biomimétique (DCM - CIRE), Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)-Université Joseph Fourier - Grenoble 1 (UJF)-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)-Université Joseph Fourier - Grenoble 1 (UJF), Université Grenoble Alpes - UFR Médecine (UGA UFRM), Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), Institute of Chemical Research of Catalonia (ICIQ), departament de Quimica, Universitat Autònoma de Barcelona (UAB)
Jazyk: angličtina
Rok vydání: 2014
Předmět:
Zdroj: Journal of the American Chemical Society
Journal of the American Chemical Society, American Chemical Society, 2014, 136 (21), pp.7655-7661. ⟨10.1021/ja501489h⟩
Recercat. Dipósit de la Recerca de Catalunya
instname
ISSN: 0002-7863
1520-5126
DOI: 10.1021/ja501489h⟩
Popis: Hydrogen produced from water and solar energy holds much promise for decreasing the fossil fuel dependence. It has recently been proven that the use of quantum dots as light harvesters in combination with catalysts is a valuable strategy to obtain photogenerated hydrogen. However, the light to hydrogen conversion efficiency of these systems is reported to be lower than 40%. The low conversion efficiency is mainly due to losses occurring at the different interfacial charge-transfer reactions taking place in the multicomponent system during illumination. In this work we have analyzed all the involved reactions in the hydrogen evolution catalysis of a model system composed of CdTe quantum dots, a molecular cobalt catalyst and vitamin C as sacrificial electron donor. The results demonstrate that the electron transfer from the quantum dots to the catalyst occurs fast enough and efficiently (nanosecond time scale), while the back electron transfer and catalysis are much slower (millisecond and microsecond time scales). Further improvements of the photodriven proton reduction should focus on the catalytic rate enhancement, which should be at least in the hundreds of nanoseconds time scale.  
Databáze: OpenAIRE