Deriving GENERIC from a generalized fluctuation symmetry
Autor: | Richard C. Kraaij, Christian Maes, Alexandre Lazarescu, Mark A. Peletier |
---|---|
Přispěvatelé: | Center for Analysis, Scientific Computing & Appl., Institute for Complex Molecular Systems, Applied Analysis |
Jazyk: | angličtina |
Rok vydání: | 2018 |
Předmět: |
Physics
Lyapunov function Statistical Mechanics (cond-mat.stat-mech) FOS: Physical sciences Statistical and Nonlinear Physics Detailed balance Fluctuation symmetry 01 natural sciences 010305 fluids & plasmas Dynamical large deviations symbols.namesake Classical mechanics 0103 physical sciences Homogeneous space Gradient flow symbols Dissipative system GENERIC Balanced flow cond-mat.stat-mech 010306 general physics Hamiltonian (quantum mechanics) Condensed Matter - Statistical Mechanics Mathematical Physics Lagrangian |
Zdroj: | Journal of Statistical Physics, 170(3), 492-508. Springer arXiv, 1706.10115. Cornell University Library |
ISSN: | 1572-9613 0022-4715 |
Popis: | Much of the structure of macroscopic evolution equations for relaxation to equilibrium can be derived from symmetries in the dynamical fluctuations around the most typical trajectory. For example, detailed balance as expressed in terms of the Lagrangian for the path-space action leads to gradient zero-cost flow. We expose a new such fluctuation symmetry that implies GENERIC, an extension of gradient flow where a Hamiltonian part is added to the dissipative term in such a way as to retain the free energy as Lyapunov function. |
Databáze: | OpenAIRE |
Externí odkaz: | |
Nepřihlášeným uživatelům se plný text nezobrazuje | K zobrazení výsledku je třeba se přihlásit. |