Deriving GENERIC from a generalized fluctuation symmetry

Autor: Richard C. Kraaij, Christian Maes, Alexandre Lazarescu, Mark A. Peletier
Přispěvatelé: Center for Analysis, Scientific Computing & Appl., Institute for Complex Molecular Systems, Applied Analysis
Jazyk: angličtina
Rok vydání: 2018
Předmět:
Zdroj: Journal of Statistical Physics, 170(3), 492-508. Springer
arXiv, 1706.10115. Cornell University Library
ISSN: 1572-9613
0022-4715
Popis: Much of the structure of macroscopic evolution equations for relaxation to equilibrium can be derived from symmetries in the dynamical fluctuations around the most typical trajectory. For example, detailed balance as expressed in terms of the Lagrangian for the path-space action leads to gradient zero-cost flow. We expose a new such fluctuation symmetry that implies GENERIC, an extension of gradient flow where a Hamiltonian part is added to the dissipative term in such a way as to retain the free energy as Lyapunov function.
Databáze: OpenAIRE
Nepřihlášeným uživatelům se plný text nezobrazuje