On the use of Functionally Graded Materials to differentiate the effects of surface severe plastic deformation, roughness and chemical Composition on cell proliferation

Autor: Laurent Weiss, Marc Novelli, Yaël Nessler, Thierry Grosdidier, Pascal Laheurte
Přispěvatelé: Laboratoire d'Etude des Microstructures et de Mécanique des Matériaux (LEM3), Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS)-Arts et Métiers Sciences et Technologies, HESAM Université (HESAM)-HESAM Université (HESAM), Labex DAMAS, Université de Lorraine (UL)
Jazyk: angličtina
Rok vydání: 2019
Předmět:
Materials science
Biocompatibility
surface mechanical attrition treatment (SMAT)
Niobium
chemistry.chemical_element
02 engineering and technology
Surface finish
human mesenchymal stem cells culture
01 natural sciences
titanium niobium alloys
0103 physical sciences
[SDV.BC.IC]Life Sciences [q-bio]/Cellular Biology/Cell Behavior [q-bio.CB]
General Materials Science
Composite material
[SDV.IB.BIO]Life Sciences [q-bio]/Bioengineering/Biomaterials
Chemical composition
010302 applied physics
Metals and Alloys
cell adhesion
ultrasonic shot peening (USP)
Adhesion
[CHIM.MATE]Chemical Sciences/Material chemistry
021001 nanoscience & nanotechnology
Microstructure
functionally graded materials (FGM)
titanium molybdenum alloys
cell proliferation
chemistry
[SDV.IB]Life Sciences [q-bio]/Bioengineering
Severe plastic deformation
0210 nano-technology
Titanium
Zdroj: Metals
Metals, MDPI, 2019, 9 (12), pp.1344. ⟨10.3390/met9121344⟩
Volume 9
Issue 12
ISSN: 2075-4701
Popis: International audience; Additive manufacturing allows the manufacture of parts made of functionally graded materials (FGM) with a chemical gradient. This research work underlines that the use of FGM makes it possible to study mechanical, microstructural or biological characteristics while minimizing the number of required samples. The application of severe plastic deformation (SPD) by surface mechanical attrition treatment (SMAT) on FGM brings new insights on a major question in this field: which is the most important parameter between roughness, chemistry and microstructure modification on biocompatibility? Our study demonstrates that roughness has a large impact on adhesion while microstructure refinement plays a key role during the early stage of proliferation. After several days, chemistry is the main parameter that holds sway in the proliferation stage. With this respect, we also show that niobium has a much better biocompatibility than molybdenum when alloyed with titanium.
Databáze: OpenAIRE