A Simple proof of Curtis' connectivity theorem for Lie powers

Autor: Andrei Semenov, Vladislav Romanovskii, Sergei O. Ivanov
Rok vydání: 2019
Předmět:
DOI: 10.48550/arxiv.1912.03086
Popis: We give a simple proof of the Curtis' theorem: if $A_\bullet$ is $k$-connected free simplicial abelian group, then $L^n(A_\bullet)$ is an $k+ \lceil \log_2 n \rceil$-connected simplicial abelian group, where $L^n$ is the functor of $n$-th Lie power. In the proof we do not use Curtis' decomposition of Lie powers. Instead of this we use the Chevalley-Eilenberg complex for the free Lie algebra.
Databáze: OpenAIRE