The Molecular Basis for Na-Dependent Phosphate Transport in Human Erythrocytes and K562 Cells
Autor: | Robert B. Gunn, Richard T. Timmer |
---|---|
Rok vydání: | 2000 |
Předmět: |
Gene isoform
Cell type Erythrocytes Physiology Molecular Sequence Data Biological Transport Active In Vitro Techniques BNP-1 Biology Polymerase Chain Reaction Phosphates 03 medical and health sciences 0302 clinical medicine cotransport medicine Animals Humans Protein Isoforms Amino Acid Sequence Phylogeny DNA Primers phosphate 030304 developmental biology 0303 health sciences Base Sequence Symporters Sodium Sodium-Phosphate Cotransporter Proteins Amiloride Kinetics Biochemistry lithium Cell culture Symporter Original Article Carrier Proteins K562 Cells Cotransporter 030217 neurology & neurosurgery K562 cells medicine.drug |
Zdroj: | The Journal of General Physiology |
ISSN: | 1540-7748 0022-1295 |
DOI: | 10.1085/jgp.116.3.363 |
Popis: | The kinetics of sodium-stimulated phosphate flux and phosphate-stimulated sodium flux in human red cells have been previously described (Shoemaker, D.G., C.A. Bender, and R.B. Gunn. 1988. J. Gen. Physiol. 92:449–474). However, despite the identification of multiple isoforms in three gene families (Timmer, R.T., and R.B. Gunn. 1998. Am. J. Physiol. Cell Physiol. 274:C757–C769), the molecular basis for the sodium-phosphate cotransporter in erythrocytes is unknown. Most cells express multiple isoforms, thus disallowing explication of isoform-specific kinetics and function. We have found that erythrocyte membranes express one dominant isoform, hBNP-1, to which the kinetics can thus be ascribed. In addition, because the erythrocyte Na-PO4 cotransporter can also mediate Li-PO4 cotransport, it has been suggested that this transporter functions as the erythrocyte Na–Li exchanger whose activity is systematically altered in patients with bipolar disease and patients with essential hypertension. To determine the molecular basis for the sodium-phosphate cotransporter, we reasoned that if the kinetics of phosphate transport in a nucleated erythroid-like cell paralleled those of the Na-activated pathway in anucleated erythrocytes and yet were distinct from those known for other Na-PO4 cotransporters, then the expressed genes may be the same in both cell types. In this study, we show that the kinetics of sodium phosphate cotransport were similar in anuclear human erythrocytes and K562 cells, a human erythroleukemic cell line. Although the erythrocyte fluxes were 750-fold smaller, the half-activation concentrations for phosphate and sodium and the relative cation specificities for activation of 32PO4 influx were similar. Na-activation curves for both cell types showed cooperativity consistent with the reported stoichiometry of more than one Na cotransported per PO4. In K562 cells, external lithium activation of phosphate influx was also cooperative. Inhibition by arsenate, KI = 2.6–2.7 mM, and relative inhibition by amiloride, amiloride analogs, phosphonoformate, and phloretin were similar. These characteristics were different from those reported for hNaPi-3 and hPiT-1 in other systems. PCR analysis of sodium-phosphate cotransporter isoforms in K562 cells demonstrated the presence of mRNAs for hPiT-1, hPiT-2, and hBNP-1. The mRNAs for hNaPi-10 and hNaPi-3, the other two known isoforms, were absent. Western analysis of erythrocytes and K562 cells with isoform-specific antibodies detected the presence of only hBNP-1, an isoform expressed in brain neurons and glia. The similarities in the kinetics and the expression of only hBNP-1 protein in the two cell types is strong evidence that hBNP-1 is the erythrocyte and K562 cell sodium-phosphate cotransporter. |
Databáze: | OpenAIRE |
Externí odkaz: |