A DNA damage-induced, SOS-independent checkpoint regulates cell division in Caulobacter crescentus

Autor: Barrett S. Perchuk, Joshua W. Modell, Tracy K. Kambara, Michael T. Laub
Přispěvatelé: Massachusetts Institute of Technology. Department of Biology, Modell, Joshua W., Kambara, Tracy K., Perchuk, Barrett, Laub, Michael T.
Jazyk: angličtina
Rok vydání: 2014
Předmět:
Zdroj: PLoS Biology, Vol 12, Iss 10, p e1001977 (2014)
PLoS Biology
Public Library of Science
ISSN: 1545-7885
1544-9173
Popis: A study of the bacterium Caulobacter crescentus reveals an SOS-independent DNA damage response pathway that acts via a novel cell division inhibitor, DidA, to suppress septum synthesis.
Cells must coordinate DNA replication with cell division, especially during episodes of DNA damage. The paradigm for cell division control following DNA damage in bacteria involves the SOS response where cleavage of the transcriptional repressor LexA induces a division inhibitor. However, in Caulobacter crescentus, cells lacking the primary SOS-regulated inhibitor, sidA, can often still delay division post-damage. Here we identify didA, a second cell division inhibitor that is induced by DNA damage, but in an SOS-independent manner. Together, DidA and SidA inhibit division, such that cells lacking both inhibitors divide prematurely following DNA damage, with lethal consequences. We show that DidA does not disrupt assembly of the division machinery and instead binds the essential division protein FtsN to block cytokinesis. Intriguingly, mutations in FtsW and FtsI, which drive the synthesis of septal cell wall material, can suppress the activity of both SidA and DidA, likely by causing the FtsW/I/N complex to hyperactively initiate cell division. Finally, we identify a transcription factor, DriD, that drives the SOS-independent transcription of didA following DNA damage.
Author Summary Cells have evolved sophisticated mechanisms for repairing their DNA and maintaining genome integrity. A critical aspect of the repair process is an arrest of cell cycle progression, thereby ensuring that cell division is not attempted before the genome has been repaired and fully duplicated. Our paper explores the molecular mechanisms that underlie the inhibition of cell division following DNA damage in the bacterium Caulobacter crescentus. For most bacteria, the primary, and only mechanism previously described involves the SOS response, in which DNA damage induces cleavage of the transcriptional repressor LexA, driving induction of a battery of genes that includes an inhibitor of cell division (sulA in E. coli and sidA in Caulobacter). Here, we report that Caulobacter cells have a second, SOS-independent damage response pathway that induces another division inhibitor, didA, which works together with sidA to block cell division following DNA damage. We also identify the damage-sensitive transcription factor responsible for inducing DidA. Finally, our study demonstrates that DidA and SidA inhibit cell division in an atypical manner. Many division inhibitors in bacteria appear to inhibit the protein FtsZ, which forms a ring at the site of cell division. DidA and SidA, however, target a trio of proteins, FtsW/I/N, that help synthesize the new cell wall that will separate the daughter cells (the septum). In sum, our work expands our understanding of how bacterial cells respond to DNA damage and the mechanisms by which they regulate cell division.
Databáze: OpenAIRE