Distribution of the coalescence times in a system of diffusion-aggregation of particle clusters in one dimension

Autor: Jean-Yves Fortin, M. Y. Choi
Přispěvatelé: Laboratoire de Physique et Chimie Théoriques (LPCT), Institut de Chimie du CNRS (INC)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS), Department of Physics and Astronomy [Seoul], Seoul National University [Seoul] (SNU), National Research Foundation of Korea NRF-2018H1D3A2065321 and 2019R1F1A1046285
Jazyk: angličtina
Rok vydání: 2020
Předmět:
Zdroj: Journal of Physics A: Mathematical and Theoretical
Journal of Physics A: Mathematical and Theoretical, IOP Publishing, 2020, 53, pp.505004. ⟨10.1088/1751-8121/abc8c5⟩
ISSN: 1751-8113
1751-8121
DOI: 10.1088/1751-8121/abc8c5⟩
Popis: We consider the stochastic dynamics of a system of diffusing clusters of particles on a finite periodic chain. A given cluster of particles can diffuse to the right or left as a whole and merge with other clusters; this process continues until all the clusters coalesce. We examine the distribution of the cluster numbers evolving in time, by means of a general time-dependent master equation based on a Smoluchowski equation for local coagulation and diffusion processes. Further, the limit distribution of the coalescence times is evaluated when only one cluster survives.
Databáze: OpenAIRE