On LTL model-checking for low-dimensional discrete linear dynamical systems

Autor: Karimov, Toghrul, Ouaknine, Joël, Worrell, James
Přispěvatelé: Javier Esparza, Daniel Kráľ
Jazyk: angličtina
Rok vydání: 2020
Předmět:
Zdroj: 45th International Symposium on Mathematical Foundations of Computer Science
Leibniz International Proceedings in Informatics
45th International Symposium on Mathematical Foundations of Computer Science (MFCS)
DOI: 10.4230/lipics.mfcs.2020.54
Popis: Consider a discrete dynamical system given by a square matrix $M \in \mathbb{Q}^{d \times d}$ and a starting point $s \in \mathbb{Q}^d$. The orbit of such a system is the infinite trajectory $\langle s, Ms, M^2s, \ldots\rangle$. Given a collection $T_1, T_2, \ldots, T_m \subseteq \mathbb{R}^d$ of semialgebraic sets, we can associate with each $T_i$ an atomic proposition $P_i$ which evaluates to true at time $n$ if, and only if, $M^ns \in T_i$. This gives rise to the LTL Model-Checking Problem for discrete linear dynamical systems: given such a system $(M,s)$ and an LTL formula over such atomic propositions, determine whether the orbit satisfies the formula. The main contribution of the present paper is to show that the LTL Model-Checking Problem for discrete linear dynamical systems is decidable in dimension 3 or less.
Comment: Long version of MFCS 2020 paper (19 pages)
Databáze: OpenAIRE