On the number of hypercubic bipartitions of an integer
Autor: | Geir Agnarsson |
---|---|
Rok vydání: | 2013 |
Předmět: | |
Zdroj: | Discrete Mathematics. 313:2857-2864 |
ISSN: | 0012-365X |
DOI: | 10.1016/j.disc.2013.08.033 |
Popis: | We revisit a well-known divide-and-conquer maximin recurrence $f(n) = \max(\min(n_1,n_2) + f(n_1) + f(n_2))$ where the maximum is taken over all proper bipartitions $n = n_1+n_2$, and we present a new characterization of the pairs $(n_1,n_2)$ summing to $n$ that yield the maximum $f(n) = \min(n_1,n_2) + f(n_1) + f(n_2)$. This new characterization allows us, for a given $n\in\nats$, to determine the number $h(n)$ of these bipartitions that yield the said maximum $f(n)$. We present recursive formulae for $h(n)$, a generating function $h(x)$, and an explicit formula for $h(n)$ in terms of a special representation of $n$. Comment: 13 pages |
Databáze: | OpenAIRE |
Externí odkaz: |