Construction and Modeling of Multi-Circuit Multi-Voltage HVAC Transmission Lines
Autor: | Paweł Kubek, Henryk Kocot, Agnieszka Dziendziel |
---|---|
Rok vydání: | 2021 |
Předmět: |
zero-sequence voltage
Control and Optimization Computer science 020209 energy optimal span length Overhead (engineering) Energy Engineering and Power Technology 02 engineering and technology lcsh:Technology Capacitance Electric power system 0202 electrical engineering electronic engineering information engineering Electronic engineering Electrical and Electronic Engineering Engineering (miscellaneous) Electrical impedance Electronic circuit lcsh:T Renewable Energy Sustainability and the Environment Electric potential energy overhead lines electromagnetic field around transmission line admittance model symmetrical components voltage quality voltage unbalance asymmetric line operation asymmetry factors 020206 networking & telecommunications Symmetrical components Line (electrical engineering) Electric power transmission Energy (miscellaneous) Voltage |
Zdroj: | Energies; Volume 14; Issue 2; Pages: 421 Energies, Vol 14, Iss 421, p 421 (2021) |
ISSN: | 1996-1073 |
DOI: | 10.3390/en14020421 |
Popis: | A transmission network’s main objective is to continuously supply electrical energy to consumers. This article presents an analysis of the use of multi-circuit, multi-voltage overhead lines as a compromise between ensuring the system’s safe operation by increasing the transmission network capacity and managing the constraints related to its expansion. The considerations presented in this work include the construction of such lines, their operation, and modeling aspects. As part of the study, the potential for improving the environmental conditions around the lines is discussed in terms of the necessary area for their construction and the peak electromagnetic field strength in their vicinity. We also present a mechanical analysis of stress and sag coordination in the individual circuits of these lines. Then, we detail the method for determining the electrical parameters of multi-voltage lines’ series impedances and capacitance. Specific attention is given to the possibility of zero-sequence voltage that occurs in the systems despite the symmetric supply and load of circuits—especially in the circuits with the lowest voltages—that result from the line’s geometric asymmetry. We evaluate the impact of the line’s geometric asymmetry on the power system’s correct operation by determining the asymmetry factors. Finally, the accuracy of using a simplified symmetric model for lines with various geometric asymmetries is analyzed by studying the error of the short-circuit currents. |
Databáze: | OpenAIRE |
Externí odkaz: | |
Nepřihlášeným uživatelům se plný text nezobrazuje | K zobrazení výsledku je třeba se přihlásit. |