Numerical simulations of hydraulic jumps with the Shear Shallow Water model

Autor: Hervé Guillard, Yih-Chin Tai, Argiris I. Delis
Přispěvatelé: Technical University of Crete [Chania], Control, Analysis and Simulations for TOkamak Research (CASTOR), Inria Sophia Antipolis - Méditerranée (CRISAM), Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Laboratoire Jean Alexandre Dieudonné (JAD), Université Côte d'Azur (UCA)-Université Nice Sophia Antipolis (... - 2019) (UNS), COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Université Nice Sophia Antipolis (... - 2019) (UNS), COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS), National Cheng Kung University (NCKU), Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Laboratoire Jean Alexandre Dieudonné (LJAD), Université Nice Sophia Antipolis (1965 - 2019) (UNS), COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Université Nice Sophia Antipolis (1965 - 2019) (UNS), COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)
Jazyk: angličtina
Rok vydání: 2018
Předmět:
Statistics and Probability
[PHYS.PHYS.PHYS-FLU-DYN]Physics [physics]/Physics [physics]/Fluid Dynamics [physics.flu-dyn]
0208 environmental biotechnology
[INFO.INFO-OH]Computer Science [cs]/Other [cs.OH]
[PHYS.MPHY]Physics [physics]/Mathematical Physics [math-ph]
02 engineering and technology
[MATH.MATH-FA]Mathematics [math]/Functional Analysis [math.FA]
01 natural sciences
010305 fluids & plasmas
Physics::Fluid Dynamics
[PHYS.PHYS.PHYS-COMP-PH]Physics [physics]/Physics [physics]/Computational Physics [physics.comp-ph]
[SPI]Engineering Sciences [physics]
Extended model
[MATH.MATH-MP]Mathematics [math]/Mathematical Physics [math-ph]
[PHYS.PHYS.PHYS-PLASM-PH]Physics [physics]/Physics [physics]/Plasma Physics [physics.plasm-ph]
0103 physical sciences
[MATH.MATH-AP]Mathematics [math]/Analysis of PDEs [math.AP]
[INFO]Computer Science [cs]
Shallow water equations
Hydraulic jump
ComputingMilieux_MISCELLANEOUS
Mathematics
[INFO.INFO-MS]Computer Science [cs]/Mathematical Software [cs.MS]
Numerical Analysis
Finite volume method
Turbulence
[SPI.PLASMA]Engineering Sciences [physics]/Plasmas
Mechanics
[PHYS.MECA]Physics [physics]/Mechanics [physics]
[INFO.INFO-NA]Computer Science [cs]/Numerical Analysis [cs.NA]
020801 environmental engineering
Computational Mathematics
Waves and shallow water
Classical mechanics
Shear (geology)
Modeling and Simulation
[MATH.MATH-OC]Mathematics [math]/Optimization and Control [math.OC]
Horizontal flow
[INFO.INFO-DC]Computer Science [cs]/Distributed
Parallel
and Cluster Computing [cs.DC]

[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]
[MATH.MATH-NA]Mathematics [math]/Numerical Analysis [math.NA]
Zdroj: SMAI Journal of Computational Mathematics
SMAI Journal of Computational Mathematics, Société de Mathématiques Appliquées et Industrielles (SMAI), 2018, 4, pp.319-344
SMAI Journal of Computational Mathematics, 2018, 4, pp.319-344
ISSN: 2426-8399
Popis: An extension and numerical approximation of the shear shallow water equations model recently proposed in [21] is considered in this work. The model equations are able to describe the oscillatory nature of turbulent hydraulic jumps and as such correct the deficiency of the classical shallow water equations in describing such phenomena. The model equations, orig- inally developed for horizontal flow or flows occurring over small constant slopes, are straight- forwardly extended here for modeling flows over non-constant slopes and numerically solved by a second-order well-balanced finite volume scheme. Further, a new set of exact solutions to the extended model equations are derived and several numerical tests are performed to validate the numerical scheme and its ability to predict the oscillatory nature of hydraulic jumps under different conditions.
Databáze: OpenAIRE