Reevaluating the Genetic Contribution of Monogenic Dilated Cardiomyopathy

Autor: K Thomson, Pantazis I. Theotokis, Antonio de Marvao, Mian Ahmad, Risha Govind, Alicja Wilk, Sanjay K Prasad, Nicola Whiffin, Alexander Ing, Stuart A. Cook, Francesco Mazzarotto, David Sim, A. John Baksi, Upasana Tayal, Elizabeth Edwards, Leanne E. Felkin, Angharad M. Roberts, Iacopo Olivotto, Declan P. O'Regan, Antonis Pantazis, Rachel Buchan, James S. Ware, Laura Lihua Chan, Roddy Walsh, William Midwinter, Timothy J W Dawes, Erica Mazaika, Paul J.R. Barton, Hugh Watkins, Birgit Funke
Přispěvatelé: Cardiology, British Heart Foundation, Wellcome Trust, Medical Research Council (MRC), Fondation Leducq, Department of Health, Imperial College Healthcare NHS Trust- BRC Funding, Commission of the European Communities, Rosetrees Trust, Mason Medical Research Foundation, The Academy of Medical Sciences
Jazyk: angličtina
Rok vydání: 2020
Předmět:
Male
0301 basic medicine
Cardiac & Cardiovascular Systems
TITIN
030204 cardiovascular system & hematology
ExAC
0302 clinical medicine
Original Research Articles
Medicine
Exome
1102 Cardiorespiratory Medicine and Haematology
Disease gene
Genetics
medicine.diagnostic_test
biology
Dilated cardiomyopathy
musculoskeletal system
3. Good health
ComputingMethodologies_DOCUMENTANDTEXTPROCESSING
symbols
cardiovascular system
Female
Titin
Cardiology and Cardiovascular Medicine
Life Sciences & Biomedicine
Adult
Cardiomyopathy
Dilated

rare variant association testing
Adolescent
1117 Public Health and Health Services
genetic testing
Genetic Heterogeneity
Young Adult
03 medical and health sciences
symbols.namesake
dilated cardiomyopathy
Mendelian genetics
Physiology (medical)
Humans
Genetic Predisposition to Disease
cardiovascular diseases
Gene
Adaptor Proteins
Signal Transducing

Genetic testing
Science & Technology
MUTATIONS
business.industry
Genetic heterogeneity
1103 Clinical Sciences
medicine.disease
030104 developmental biology
Peripheral Vascular Disease
Cardiovascular System & Hematology
Cardiovascular System & Cardiology
Mendelian inheritance
biology.protein
Apoptosis Regulatory Proteins
business
Zdroj: Circulation
Circulation, 141(5), 387-398. Lippincott Williams and Wilkins
ISSN: 0009-7322
Popis: Supplemental Digital Content is available in the text.
Background: Dilated cardiomyopathy (DCM) is genetically heterogeneous, with >100 purported disease genes tested in clinical laboratories. However, many genes were originally identified based on candidate-gene studies that did not adequately account for background population variation. Here we define the frequency of rare variation in 2538 patients with DCM across protein-coding regions of 56 commonly tested genes and compare this to both 912 confirmed healthy controls and a reference population of 60 706 individuals to identify clinically interpretable genes robustly associated with dominant monogenic DCM. Methods: We used the TruSight Cardio sequencing panel to evaluate the burden of rare variants in 56 putative DCM genes in 1040 patients with DCM and 912 healthy volunteers processed with identical sequencing and bioinformatics pipelines. We further aggregated data from 1498 patients with DCM sequenced in diagnostic laboratories and the Exome Aggregation Consortium database for replication and meta-analysis. Results: Truncating variants in TTN and DSP were associated with DCM in all comparisons. Variants in MYH7, LMNA, BAG3, TNNT2, TNNC1, PLN, ACTC1, NEXN, TPM1, and VCL were significantly enriched in specific patient subsets, with the last 2 genes potentially contributing primarily to early-onset forms of DCM. Overall, rare variants in these 12 genes potentially explained 17% of cases in the outpatient clinic cohort representing a broad range of adult patients with DCM and 26% of cases in the diagnostic referral cohort enriched in familial and early-onset DCM. Although the absence of a significant excess in other genes cannot preclude a limited role in disease, such genes have limited diagnostic value because novel variants will be uninterpretable and their diagnostic yield is minimal. Conclusions: In the largest sequenced DCM cohort yet described, we observe robust disease association with 12 genes, highlighting their importance in DCM and translating into high interpretability in diagnostic testing. The other genes analyzed here will need to be rigorously evaluated in ongoing curation efforts to determine their validity as Mendelian DCM genes but have limited value in diagnostic testing in DCM at present. This data will contribute to community gene curation efforts and will reduce erroneous and inconclusive findings in diagnostic testing.
Databáze: OpenAIRE