Simultaneous high nutritional single cell oil and lipase production by Candida viswanathii
Autor: | Nayra Morgana Lima de Oliveira, Alex Fernando de Almeida, Fabrício Coutinho de Paula-Elias, Kleydiane Braga Dias, Erika Carolina Vieira-Almeida, Bruno S. A. F. Brasil |
---|---|
Rok vydání: | 2021 |
Předmět: |
food.ingredient
Tributyrin Candida viswanathii Cell morphology chemistry.chemical_compound food Plant Oils Food science Triolein Lipase Triglycerides Candida chemistry.chemical_classification biology Sunflower oil Fatty acid Lipid Metabolism biology.organism_classification Glucose chemistry biology.protein Single-Cell Analysis Corn oil Food Science |
Zdroj: | Acta Scientiarum Polonorum Technologia Alimentaria. 20:93-102 |
ISSN: | 1898-9594 1644-0730 |
DOI: | 10.17306/j.afs.0856 |
Popis: | Background Omega fatty acids are a family of polyunsaturated fats associated with several health benefits. Lipases are enzymes with potential application in several food processes such as flavor and aroma, surfactants and formulations for the dairy and bakery industries. In this study, single cell oil and lipase production by Candida viswanathii CCR8137 were evaluated simultaneously from renewable carbon sources under nitrogen limitation. Methods Enzyme and single cell oil were obtained in submerged cultivations supplemented with triolein, tributyrin, corn oil, sunflower oil, canola oil and olive oil. The effects of glucose on lipid accumulation, fatty acid profile, enzyme production and cell morphology were also evaluated. Results The highest lipid accumulation (44.5%, w/w) was obtained from triolein, whereas olive oil was the best inducer of lipase synthesis (26.8 U/mL). Nitrogen limiting cultivations were a key parameter for an organic source which showed higher lipid accumulation and enzyme production than the tested inorganic nitrogen source. Glucose was a poor inducer of lipase synthesis, though increased values of lipid accumulation were observed from this carbon source with a maximum of 63.1% (w/w). The fatty acid profile of lipids produced by C. viswanathii CCR8137 showed a high content of omega-9 fatty acid (C18:1 n-9). The addition of glucose to the culture media resulted in the synthesis of essential fatty acids: vaccenic, linolenic and eicosadienoic acids. Conclusions Therefore, C. viswanathii CCR8137 strain can be considered as an oleaginous yeast able to accumulate high concentrations of intracellular lipids, which are potential additives for food industry applications as well as being able to simultaneously synthesize high yields of lipase. |
Databáze: | OpenAIRE |
Externí odkaz: |